Сложно не заметить, насколько стабильность поставок электроэнергии загородным объектам отличается от обеспечения городских зданий и предприятий электроэнергией. Признайтесь, что вы как владелец частного дома или дачи не раз сталкивались с перебоями, связанными с ними неудобствами и порчей техники.
Перечисленные негативные ситуации вместе с последствиями перестанут осложнять жизнь любителей природных просторов. Причем с минимальными трудовыми и финансовыми затратами. Для этого нужно всего лишь сделать ветряной генератор электроэнергии, о чем мы детально рассказываем в статье.
Мы подробно описали варианты изготовления полезной в хозяйстве системы, избавляющей от энергетической зависимости. Согласно нашим советам соорудить ветрогенератор своими руками сможет неопытный домашний мастер. Практичное устройство поможет существенно сократить ежедневные расходы.
Содержание статьи:
- Законность установки ветрогенератора
- Принцип работы ветряной установки
- Классификация видов генераторов энергии
- Ветроэлектрическая установка роторного типа
- Стартовый этап изготовления установки
- Преимущества и недостатки роторной модели ветряка
- Сборка аксиальной ВЭУ на неодимовых магнитах
- Распределение и закрепление магнитов
- Генераторы однофазного и трехфазного вида
- Правила наматывания катушки
- Окончательная сборка устройства
- Выводы и полезное видео по теме
Законность установки ветрогенератора
Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.
Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.
Ветрогенератор — отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом
Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?
Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.
Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)
Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.
Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.
Ветрогенераторы, которые способны удовлетворить большинство потребностей среднего фермерского хозяйства, не могут вызвать нареканий даже со стороны соседей
Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.
Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:
- Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
- Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
- Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
- Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.
При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.
Галерея изображений
Фото из
Условия для устройства ветряной электростанции
Обширная площадка для установки ветряного генератора
Расположение мощного ветрогенератора относительно соседей
Цена электроэнергии как аргумент за ветрогенератор
Установка ветряка должна быть одобрена местными властями
Мини электростанция в местах с перебоями в поставке электроэнергии
Использование ветрогенератора заводского производства
Изготовление бюджетного варианта своими руками
Принцип работы ветряной установки
Ветрогенератор или ветроэлектрическая установка (ВЭУ) – это устройство, которое используется в целях преобразования кинетической энергии потока ветра в механическую энергию. Полученная механическая энергия вращает ротор и преобразуется в необходимый нам электрический вид.
Принцип действия и устройство кинетического ветряка подробно описаны в статье, с которой мы рекомендуем ознакомиться.
В состав ВЭУ входят:
- лопасти, образующие пропеллер,
- вращающийся ротор турбины,
- ось генератора и сам генератор,
- инвертор, который преобразует переменный ток в постоянный, использующийся для зарядки батарей,
- аккумулятор.
Суть устройства ветряных установок проста. В процессе вращения ротора образуется трехфазный переменный ток, который затем проходит через контроллер и заряжает аккумуляторную батарею постоянного тока. Дальше инвертор преобразует ток, чтобы его можно было потреблять, питая освещение, радиоприемник, телевизор, микроволновую печь и так далее.
Подробное устройство ветрогенератора с горизонтальной осью вращения позволяет хорошо представить себе, какие элементы способствуют превращению кинетической энергии в механическую, а затем в электрическую
В целом, принцип работы ветрогенератора любого типа и конструкции заключается в следующем: в процессе вращения возникает три вида силового воздействия на лопасти: тормозящее, импульсное и подъёмное.
Эта схема работы ветроустановки позволяет понять, что происходит с электроэнергией, произведенной работой ветрогенератора: часть её аккумулируется, а другая — потребляется
Две последние силы преодолевают тормозящую силу и приводят в движение маховик. На неподвижной части генератора ротор формирует магнитное поле, чтобы электрический ток пошел по проводам.
Галерея изображений
Фото из
Двигатель для простейшего ветряка
Специфика соединения мотора с лопастями
Равновесие хвостовой и лобовой части
Правила установки ветряного генератора
Классификация видов генераторов энергии
Существует несколько признаком, по которым классифицируют ветроэлектрические установки. Как подобрать оптимальный вариант устройства для загородной собственности подробно рассказано в одной из самых популярных статей на нашем сайте.
Итак, ветряки различаются по:
- числу лопастей в пропеллере;
- материалам изготовления лопастей;
- расположению оси вращения относительно поверхности земли;
- шаговому признаку винта.
Встречаются модели с одной, двумя, тремя лопастями и многолопастные.
Изделия с большим числом лопастей начинают своё вращение даже при небольшом ветре. Обычно их используют в таких работах, когда сам процесс вращения важнее получения электроэнергии. Например, для извлечения воды из глубоких скважинных стволов.
Оказывается лопасти ветрогенератора можно делать не только из твердых материалов, но и из доступной по цене ткани
Лопасти могут быть парусными или жесткими. Парусные изделия намного дешевле жестких, на изготовление которых идёт металл или стеклопластик. Но их приходится очень часто ремонтировать: они непрочные.
Что касается расположения оси вращения относительно земной поверхности, различают вертикальные ветряки и горизонтальные модели. И в этом случае каждая разновидность имеет свои преимущества: вертикальные более чутко реагируют на каждое дуновение ветра, зато горизонтальные мощнее.
Ветрогенераторы разделяются по шаговым признакам на модели с фиксированным и изменяемым шагом. Изменяемый шаг позволяет существенно увеличивать скорость вращения, но такая установка отличается сложной и массивной конструкцией. ВЭУ с фиксированным шагом проще и надёжнее.
Галерея изображений
Фото из
От изрядно поврежденного автогенератора после разборки остался лишь статор, для которого был отдельно сварен корпус
Для того чтобы восстановить технические характеристики двигателя, надо перемотать 36 катушек статора. В перемотке потребуется провод диаметром 0,56 мм. Витков надо сделать по 35 штук
Перед креплением лопастей отремонтированный двигатель надо собрать, покрыть лаком или хотя бы эпоксидкой, поверхность нужно покрасить
Провода соединяются по параллельной схеме, три провода выводятся для подключения к источнику питания
Ось, предназначенная для обеспечения вращения, выполнена из отвода трубы 15. К оси приварены подшипники, которые привалены через отрезок трубы 52
В изготовлении хвоста использована оцинкованная листовая сталь толщиной 4 мм, загнутая по краям и установленная в выбранный в рейке паз
Лопасти вырезаны из полимерной канализационной трубы, прикреплены к соединяемому с двигателем треугольнику шурупами
Практически бесплатный ветряной генератор можно сделать из бросовых деталей: двигателя от старого автомобиля и обрезка канализационной трубы
Шаг 1: Разборка бывшего в употреблении генератора
Шаг 2: Восстановление возможностей двигателя
Шаг 3: Сборка восстановленного двигателя для ветряка
Шаг 4: Соединение проводов двигателя и вывод их к силовой линии
Шаг 5: Специфические особенности устройства поворотного узла
Шаг 6: Изготовления хвоста для реагирования на ветер
Шаг 7: Крепление лопастей ветряной мини электростанции
Шаг 8: Сборка практически бесплатного генератора электроэнергии
Ветроэлектрическая установка роторного типа
Разберёмся, как смастерить своими руками простой ветряк с вертикальной осью вращения роторного типа. Такая модель вполне может обеспечить потребности в электроэнергии садового домика, разнообразных хозяйственных построек, а также подсветить в темное время суток придомовую территорию и садовые дорожки.
Лопасти этой установки роторного типа с вертикальной осью вращения явно выполнены из элементов, вырезанных из металлической бочки
Наша цель – изготовление ветряка, предельная мощность которого составит 1,5 кВт.
Для этого нам понадобятся следующие элементы и материалы:
- автомобильный генератор на 12 V;
- гелиевый или кислотный аккумулятор на 12 V;
- полугерметичный выключатель разновидности «кнопка» на 12 V;
- преобразователь 700 W – 1500 W и 12V – 220V;
- ведро, кастрюля большого объёма или другая вместительная ёмкость из нержавеющей стали или из алюминия;
- автомобильное реле контрольной лампы заряда или зарядки аккумулятора;
- автомобильный вольтметр (можно любой);
- болты с гайками и шайбами;
- провода сечением 4 квадратных мм и 2,5 квадратных мм;
- два хомута для закрепления генератора на мачте.
В процессе выполнения работ нам будут нужны болгарка или ножницы по металлу, строительный карандаш или маркер, рулетка, кусачки, сверло, дрель, ключи и отвертка.
Контроллер для системы, генерирующей электроэнергию, также можно собрать своими руками. С правилами и схемами изготовления контроллера для ветряка ознакомит статья, с содержанием которой мы советуем ознакомиться.
Стартовый этап изготовления установки
Изготовление самодельного ветряка начинаем с того, что возьмем большую металлическую ёмкость цилиндрической формы. Обычно для этой цели используют старую выварку, ведро или кастрюлю. Именно она будет основой для нашего будущего ВЭУ.
С помощью рулетки и строительного карандаша (маркера) нанесем разметку: поделим нашу ёмкость на четыре одинаковые части.
Выполняя разрезы в соответствии с теми указаниями, которые содержатся в тексте, ни в коем случае не прорезайте металл до конца
Металл придется резать. Для этого можно использовать болгарку. Её не применяют для разрезания ёмкости из оцинкованной стали или окрашенной жести, потому что металл такого вида обязательно перегреется. Для таких случаев лучше использовать ножницы. Вырезаем лопасти, но не прорезаем их до самого конца.
Варианты, схемы и рекомендации по изготовлению различных моделей лопастей для ветрогенератора вы найдете в рекомендуемой нами статье.
Одновременно с продолжением работ над ёмкостью мы будем переделывать шкив генератора. В днище бывшей кастрюли и в шкиве нужно наметить и просверлить отверстия для болтов. К работам на этой стадии нужно отнестись максимально внимательно: все отверстия должны располагаться симметрично, чтобы в ходе вращения установки не возникло дисбаланса.
Так выглядят лопасти ещё одной конструкции с вертикальной осью вращения. Каждая лопасть изготавливается отдельно, а потом монтируется в общее устройство
Отгибаем лопасти так, чтобы они не слишком торчали. Когда мы выполняем эту часть работы, обязательно учитываем, в какую сторону будет вращаться генератор.
Обычно направление его вращения ориентировано по ходу часовой стрелке. Угол изгиба лопастей влияет на площадь воздействия воздушных потоков и на скорость вращения пропеллера.
Теперь нужно закрепить на шкиве ведро с подготовленными к работе лопастями. Устанавливаем генератор на мачту, зафиксировав его при этом хомутами. Осталось присоединить провода и собрать цепь. Подготовьтесь записать схему соединения, цвета проводов и маркировку контактов. Позже она вам непременно пригодится. Фиксируем провода на мачте устройства.
Этот рисунок содержит подробные рекомендации по сборке общей конструкции и общий вид устройства уже в собранном и готовом к эксплуатации виде
Для подсоединения аккумулятора нужно применить провода сечением 4 мм². Достаточно взять отрезок протяженностью 1 метр. Этого хватит.
А для того чтобы подключить к сети нагрузку, в состав которой входят, например, осветительные и электрические приборы, достаточно проводов с сечением 2,5 мм². Устанавливаем инвертер (преобразователь). Для этого тоже будет нужен провод 4 мм².
Преимущества и недостатки роторной модели ветряка
Если вы сделали всё аккуратно и последовательно, то этот ветрогенератор будет успешно работать. При этом никаких проблем в ходе его эксплуатации не возникнет.
Если использовать преобразователь 1000 W и аккумулятор 75А, это установка обеспечит электричеством и приборы видеонаблюдения, и охранную сигнализацию и даже уличное освещение.
Достоинства этой модели таковы:
- экономична;
- элементы легко можно поменять на новые или отремонтировать;
- особые условия для функционирования не нужны;
- надежная в эксплуатации;
- обеспечивает полный акустический комфорт.
Недостатки тоже имеются, но их не так уж много: производительность этого устройства не слишком высока, и у него имеется значительная зависимость от внезапных порывов ветра. Воздушные потоки могут попросту сорвать импровизированный пропеллер.
Для того чтобы точно подобрать модель ветрогенератора требующейся мощности перед началом работ советуем сделать расчет по приведенным в рекомендуемой статье формулам.
Сборка аксиальной ВЭУ на неодимовых магнитах
Поскольку неодимовые магниты в России появились относительно недавно, то и аксиальные ветрогенераторы с безжелезными статорами стали делать не так давно.
Появление магнитов вызвало ажиотажный спрос, но постепенно рынок насытился, и стоимость этого товара стала снижаться. Он стал доступен для умельцев, которые тут же приспособили его для своих разнообразных нужд.
Аксиальная ВЭУ на неодимовых магнитах с горизонтальной осью вращения — более сложная конструкция, требующая не только умения, но и определенных знаний
Если у вас имеется ступица от старого авто с тормозными дисками, то её и возьмем в качестве основы будущего аксиального генератора.
Предполагается, что эта деталь не новая, а уже эксплуатировавшаяся. В этом случае её необходимо разобрать, проверить и смазать подшипники, тщательно вычистить прочь осадочные наслоения и всю ржавчину. Готовый генератор не забудьте покрасить.
Ступица с тормозными дисками, как правило, достаётся умельцам в качестве одного из узлов старого автомобиля, отправившегося в утиль, поэтому нуждается в тщательной чистке
Распределение и закрепление магнитов
Неодимовые магниты должны быть наклеены на диски ротора. Для нашей работы возьмем 20 магнитов 25х8мм.
Конечно, можно использовать и другое количество полюсов, но при этом необходимо соблюдать следующие правила: количество магнитов и полюсов в однофазном генераторе должно совпадать, но, если речь идёт о трехфазной модели, то соотношение полюсов к катушкам должно составлять 2/3 или 4/3.
При размещении магнитов полюса чередуются. Важно не ошибиться. Если вы не уверены, что расположите элементы правильно, сделайте шаблон-подсказку или нанесите сектора прямо на сам диск.
Если у вас есть выбор, купите лучше не круглые, а прямоугольные магниты. В прямоугольных моделях магнитное поле сосредоточено по всей длине, а в круглых – в центре.
У противостоящих магнитов должны быть разные полюса. Вы ничего не перепутаете, если с помощью маркера пометите их знаками минус или плюс. Чтобы определить полюса, возьмите магниты и поднесите их друг к другу.
Если поверхности притягиваются, поставьте на них плюс, если отталкиваются, то пометьте их минусами. При размещении магнитов на дисках чередуйте полюса.
Магниты установлены с соблюдением правила чередования полисов, по наружному и внутреннему периметрам расположены бортики из пластилина: изделие готово к заливке эпоксидной смолой
Для надежности закрепления магнита нужно применять качественный и максимально сильный клей.
Чтобы усилить надежность фиксации, можно воспользоваться эпоксидной смолой. Её следует развести так, как это указано в инструкции, и залить ею диск. Смола должна покрыть диск целиком, но не стекать с него. Предотвратить вероятность стекания можно, если обмотать диск скотчем или сделать по его периметру временные пластилиновые ограждения из полимерной полосы.
Генераторы однофазного и трехфазного вида
Если сравнивать однофазный и трехфазный статоры, то последний окажется лучше. Однофазный генератор при нагрузке вибрирует. Причиной вибрации становится разница в амплитуде тока, возникающая из-за непостоянной его отдачи за момент времени.
Такого недостатка у трехфазной модели нет. Она отличается постоянной мощностью из-за компенсирующих друг друга фаз: когда в одной происходит нарастание тока, в другой он падает.
По итогам тестирования отдача трехфазной модели почти на 50% больше, чем аналогичный показатель однофазной. Ещё одним достоинством этой модели является то, что в отсутствии лишней вибрации повышается акустический комфорт при функционировании устройства под нагрузкой.
То есть, трехфазный генератор практически не гудит в процессе его эксплуатации. Когда вибрация снижается, срок службы устройства логично повышается.
В борьбе между трехфазными и однофазными устройствами неизменно побеждает трехфазное, потому что оно не так сильно гудит в процессе работы и служит дольше однофазного
Правила наматывания катушки
Если спросить специалиста, то он скажет, что перед тем, как наматывать катушки, нужно выполнить тщательный расчет. Практик в этом вопросе положится на свою интуицию.
Мы выбрали не слишком скоростной вариант генератор. У нас процедура зарядки двенадцативольтового аккумулятора должна начаться при 100-150 оборотах за минуту. Такие исходные данные требуют, чтобы общее количество витков всех катушек составило 1000-1200 штук. Эту цифру нам осталось поделить между всеми катушками и определить, сколько же витков будет на каждой.
Ветряк на низких оборотах может быть мощнее, если увеличится количество полюсов. Частота колебаний тока в катушках при этом увеличится. Если для намотки катушек применять провод большего сечения, сопротивление уменьшится, а сила тока увеличится. Не упустите из виду тот факт, что большее напряжение может «съедать» ток из-за сопротивления обмотки.
Процесс намотки можно облегчить и сделать эффективнее, если использовать для этой цели специальный станочек.
Совсем необязательно такой рутинный процесс как наматывание катушек делать вручную. Немного смекалки и отличный станочек, который легко справляется с намоткой, уже есть
На рабочие характеристики самодельных генераторов большое влияние оказывают толщина и количество магнитов, которые расположены на дисках. Совокупную итоговую мощность можно рассчитать, если намотать одну катушку, а затем прокрутить её в генераторе. Будущая мощность генератора определяется путем измерения напряжения на конкретных оборотах без нагрузки.
Приведем пример. При сопротивлении 3 Ом и 200 оборотах в минуту выходит 30 вольт. Если отнять от этого результата 12 вольт напряжения аккумулятора, получится 18 вольт. Делим этот результат на 3 Ом и получаем 6 ампер. Объём в 6 ампер и отправится на аккумулятор. Конечно, в расчете мы не учли потери в проводах и на диодном мосту: фактический результат окажется меньше расчетного.
Обычно катушки делают круглыми. Но, если их немного вытянуть, то получится больше меди в секторе и витки окажутся прямее. Если сравнивать размер магнита и диаметр внутреннего отверстия катушек, то они должны соответствовать друг другу или размер магнита может быть немного меньше.
Уже готовые катушки должны соответствовать своими размерами магнитам: они должны быть чуть больше магнитов или равной с ними величины
Толщина статора, который мы делаем, должна правильно соотноситься с толщиной магнитов. Если статор сделать больше за счет увеличения количества витков в катушках, междисковое пространство возрастет, а магнитопоток уменьшится. Результат же может оказаться таким: образуется такое же напряжение, но, из-за увеличившегося сопротивления катушек, мы получим меньший ток.
Для изготовления формы для статора применяют фанеру. Впрочем, сектора для катушек можно разметить на бумаге, используя в качестве бордюров пластилин.
Если поверх катушек на дно формы поместить стеклоткань, прочность изделия повысится. Перед нанесением эпоксидной смолы нужно форму смазать вазелином или воском, тогда смола не прилипнет к форме. Некоторые используют вместо смазки скотч или пленку.
Между собой катушки закрепляются неподвижно. При этом концы фаз выводятся наружу. Шесть выведенных наружу проводов следует соединить звездой или треугольником. Вращая собранный генератор рукой, производят его тестирование. Если напряжение будет 40 V, то сила тока составит примерно 10 ампер.
Окончательная сборка устройства
Длина готовой мачты должна составлять примерно 6-12 метров. При таких параметрах её основание должно быть забетонированным. Сам ветряк будет закреплен на верхней части мачты.
Чтобы до него можно было добраться в случае поломки, нужно предусмотреть в основании мачты специальное крепление, которое позволит поднимать и опускать трубу, используя при этом ручную лебедку.
Высоко вздымается мачта с прикрепленным к ней ветрогенератором, но предусмотрительный мастер сделал специальное устройство, которое позволяет при необходимости опустить конструкцию на землю
Чтобы изготовить винт, можно использовать трубу ПВХ диаметром 160 мм. Она будет использоваться для вырезания из её поверхности двухметрового винта, состоящего из шести лопастей. Форму лопастей лучше разработать самостоятельно опытным путем. Цель – усилить крутящий момент при низких оборотах.
Винт-пропеллер следует беречь от слишком сильного ветра. Для решения этой задачи используют складной хвост. Выработанная энергия накапливается в аккумуляторах.
Вниманию наших читателей мы предоставили два варианта ветрогенераторов, сделанных своими руками на 220 в, которые пользуются повышенным вниманием не только владельцев загородной недвижимости, но и простых дачников.
Обе модели ВЭУ эффективны по-своему. Особенно хорошие результаты эти устройства способны продемонстрировать в степной местности с частыми и сильными ветрами. Они достаточно эффективны, чтобы использоваться в организации альтернативного отопления дома и в поставке электроэнергии. И их не так уж сложно соорудить своими руками.
Выводы и полезное видео по теме
В этом видео приведен пример ВЭУ с горизонтальной осью вращения. Автор устройства подробно объясняет нюансы конструкции установки, сделанной своими руками, обращает внимание зрителей на ошибки, которые могут быть допущены в процессе самостоятельного изготовления ветрогенератора, даёт практические советы.
Обратите внимание на то, что добраться до устройства, поднятого на приличную высоту, не так-то просто. Переустановить такое ВЭУ будет, скорее всего, проблематично. Поэтому складная конструкция мачты в этом случае будет совсем не лишней.
На этом видео представлен роторный ветряк с вертикальной осью вращения. Эта установка расположена невысоко, выполнена оригинально и отличается высокой чувствительностью: даже незначительный ветер приводит лопасти устройства в движение.
Если вы живете в местности, где ветра не считаются редким явлением, применение именно этого источника альтернативной энергии может стать для вас наиболее эффективным. Приведенные примеры самостоятельного изготовления ветряков доказывают, что сделать их своими руками не так уж сложно. Энергия ветра – общедоступный и возобновляемый ресурс, который можно и нужно использовать.
Заинтересованных темой статьи посетителей сайта мы приглашаем высказать свое мнение в комментариях и задать вопросы, возникшие в ходе ознакомления с материалом.
В этой статье мы подробно разберем, как сделать ветрогенератор своими руками. Ведь быт современного человека без электроэнергии – трудно представим. И даже небольшие перебои в подаче электричества становятся порой «парализующим моментом» для нормальной жизни в собственном доме. А такие неполадки, приходится признать, для некоторых загородных поселков или населенных пунктов в сельской местности – увы, не редкость. Значит, необходимо каким-то образом обезопасить себя от неприятностей, обзавестись резервным источником энергии. А если принять в расчет еще и постоянно растущие тарифы, то наличие собственного источника, да еще и работающего практически «забесплатно», становится заветной мечтой многих владельцев домов.
Одним из направлений развития «бесплатной энергетики» в наше время является использование энергии ветра. Многие, наверное, видели впечатляющие картины огромных ветряков, успешно применяемых в некоторых странах Европы – кое-где доля выработанной ветром энергии уже достигает нескольких десятков процентов от общего объема. Вот и возникает соблазн – а не попробовать ли и мне сделать ветрогенератор своими руками, чтобы раз и навсегда получить независимость от электросетей?
Вопрос резонный, но следует сразу несколько охладить пыл «мечтателя». Чтобы создать действительно качественную, производительную установку по выработке электроэнергии, требуются немалые знания в механике и электротехнике. Нужно быть весьма опытным мастером на все руки – предстоит целый ряд операций высокой сложности, требующих точного проектирования и квалифицированного подхода в исполнении. По совокупности этих причин, как можно судить по обсуждениям на форумах, довольно много «соискателей» либо не получили ожидаемого результата, либо и вовсе отказались от задуманного проекта.
Поэтому в данной статье будет дана обзорная картина, показывающая общие проблемы и направления их решения в процессе создания ветрогенераторов. Можно будет примерно оценить масштабность работ и трезво взвесить свои возможности – стоит ли браться самому.
Что это такое – ветрогенератор? Общее устройство системы
Существует несколько способов получения электрической энергии – за счет воздействия потоком фотонов (световой, например, солнечные батареи), за счет определенных химических реакций (широко применяется в элементах питания), за счет разницы температур. Но шире всего в настоящее время используется преобразование кинетической энергии в электрическую. Это преобразование происходит в специальных устройствах, которые как раз и называются генераторами.
Принцип работы генератора преобразователя кинетической энергии в электрическую, раскрыт и описан еще в XIX веке Фарадеем.
Он заключается в том, что если проводящую рамку разместить в изменяющемся магнитном поле, то в ней будет индуцироваться электродвижущая сила, которая при замыкании цепи приведет к появлению электрического тока. А изменение магнитного потока можно добиться вращением этой рамки в магнитном поле, или создаваемом постоянными магнитами, или появляющегося в обмотках возбуждения. При изменении положения рамки меняется величина пересекающего ее магнитного потока. И чем выше скорость изменения, тем больше показатели и наводимой ЭДС. Таким образом, чем больше оборотов передается ротору (вращающейся части генератора), те большего напряжения можно добиться на выходе.
Схема, безусловно, показана с большими упрощениями, просто для уяснения принципа.
Передача вращения на ротор генератора может осуществляться по-разному. И один из путей найти бесплатный источник энергии, который приведет в движение кинематическую часть устройства – это «поймать» силу ветра. То есть примерно так же, как это удалось сделать когда-то создателям ветряных мельниц.
Таким образом, устройство ветрового генератора подразумевает наличие генерирующего устройства и механизма передачи его статору вращательного движения, то есть ветряка. Кроме того, обязательным условием становится конструкция, обеспечивающая надежную установку системы, так как ее часто приходится размещать на немалой высоте, чтобы полноценной «ловле ветра» не мешали естественные или искусственные препятствия. В ряде случаев используется еще и кинематическая передача, предназначенная для повышения количества оборотов ротора.
Но и это – еще не все. Наличие и скорость ветра – величины чаще всего крайне непостоянные. И ставить потребление выработанной энергии в зависимость от «капризов погоды» — дело неразумное. Поэтому ветрогенератор обычно работает в связке с системой аккумуляции энергии.
Выработанный ток выпрямляется, стабилизируется и через специальное устройство-контроллер или поступает непосредственно на дальнейшее потребление, или перенаправляется на зарядку включённых в схему мощных аккумуляторов. С аккумуляторов через инвертор, преобразующий постоянный ток в переменный нужного напряжения и частоты, питание поступает к точкам потребления. Аккумуляторы становятся своеобразным буферным звеном: если текущая нагрузка меньше текущей (очень зависимой от силы ветра) мощности генератора, или если на протяжении какого-то времени и вовсе не подключены приборы потребления, то идет зарядка батарей. Если нагрузка становится выше вырабатываемой мощности – батареи разряжаются.
Интересный момент – именно эта особенность ветровой энергетической установки позволяет планировать мощность самого генератора, не исходя из пиковых показателей нагрузки (за это будет отвечать в большей мере инвертор), а отталкиваясь из прогнозируемого потребления энергии в течение определенного периода (например, месяца).
Безусловно, в быту могут использоваться и более простые схемы. Например, ветровая установка просто обслуживает какое-то низковольтное осветительное оборудование и т.п.
Для примера посмотрим вначале на простейшую конструкцию ветрогенератора, которую сможет собрать даже школьник средних классов. Практическое применение такой «электростанции» – не особо широкое, но просто чтобы расширить свое понимание и обрести некоторые навыки – почему бы и нет?
Узнайте, как сделать солнечный воздушный коллектор своими руками, а также ознакомьтесь с подробным руководством, в специальной статье на нашем портале.
Миниатюрный ветрогенератор из старых компьютерных комплектующих
Понятно, что надеяться на сколь-нибудь значимое подспорье в плане экономии электроэнергии с такой «мини-электростанцией» — по меньшей мере наивно. Но задача иногда ставится иначе – создать источник питания для походных условий, например, для подключения небольшого фонаря подсветки в палатке, для обеспечения работы радиоприемника, для возможности подзарядить гаджеты.
Встречается немало предложений использовать для подобных целей генератор, изготовленный из компьютерного кулера или электромотора от отслужившего свое принтера. Давайте посмотрим, что из этого может получиться.
Иллюстрация | Краткое описание выполняемой операции |
---|---|
Для начала – попытка сделать что-либо серьезное их обычного корпусного кулера. Питается такой вентилятор постоянным током, 12 вольт. |
|
В качестве привода используется бесщёточный двигатель, с обмоткой на статоре… | |
…и расположенными кольцом постоянными магнитами на роторе. | |
Некоторым может показаться, что достаточно совершить обратные действия, то есть подать вращающий момент на крыльчатку – и спокойно снять генерированное напряжение с контактов на входе (который превратиться в выход). Однако, это не совсем так. Простенький опыт показывает, что если раскрутить крыльчатку и подсоединить какой-нибудь маломощный светодиод к контактам разъема кулера, то, да, можно будет наблюдать не особо яркое его свечение. Но это, увы, предел возможностей такого «генератора». |
|
Причина – в нерациональной для генерации тока схеме расположения обмоток статора. Наводимые в них ЭДС в значительной мере «гасят» друг друга, и суммарные показатели напряжения получаются очень «скромными». | |
Можно попробовать перемотать катушки статора – хотя бы в целях эксперимента. Для этого кулер придется разобрать. Вначале аккуратно поддевается ножом и снимается круглая наклейка, закрывающая все «внутренности» этой сборки. |
|
Вот что открылось под ней. Снимается центральная заглушка, под которой расположен подшипник крыльчатки-ротора с фиксатором. |
|
Производится разборка этого узла – снимается стопорная шайба, а затем аккуратно извлекаются шайбы подшипника скольжения. | |
После этого крыльчатка-ротор свободно вынимается из корпуса-статора. | |
Вот так выглядят обмотки статора, которые придется заменить. | |
С платы аккуратно выпаиваются провода питания кулера. | |
Чтобы снять старую обмотку, проще всего будет просто перерезать витки ножом… | |
…а затем постепенно аккуратно удалить обрезки проволоки. | |
В итоге должен получиться вот такой голый якорь статора. Как видно, на нем четыре сердечника, расположенных крестом. На них и будет наматываться новая обмотка. |
|
Работа несложная, но может показаться утомительной. Все четыре обмотки должны быть выполнены из одного провода, без разрывов. То есть их расположение будет последовательным. Число витков – чем больше, тем лучше. Соответственно, чем тоньше будет провод для намотки – тем больше получится витков. Естественно, количество витков на каждом из сердечников должно быть одинаковым – так что при выполнении операции намотки придется внимательно их считать. А вот направление обмотки будет меняться. На первом сердечнике витки ложатся по направлению часовой стрелки. |
|
Следующий сердечник: направление намотки витков – против часовой стрелки. | |
На третьем сердечнике – вновь по часовой стрелке. | |
И последний сердечник – витки против часовой стрелки. | |
Статор после намотки. С двух концов этой обмотки будет сниматься сгенерированное напряжение – все по схеме простейшего генератора переменного тока. |
|
Плата, которая стояла в статоре кулера (с электролитическими конденсаторами) в данном случае не нужна – ее можно просто удалить. Статор заводится в свое гнездо – для его точной посадки там имеются шлицы. |
|
Концы проводов через окошко в корпусе выводятся вниз. | |
К ним можно после зачистки и облуживания сразу припаять провода, которые пойдут на выпрямитель. | |
Затем на место устанавливается крыльчатка-ротор. Производится сборка подшипника и фиксация стопорной шайбой – в противоположном проведенной разборке порядке |
|
Получившийся генератор будет выдавать переменное напряжение. То есть необходимо установить выпрямитель – диодный мост. Можно использовать готовую сборку, либо спаять самостоятельно из четырех диодов. Для сглаживания пульсации рекомендуется дополнить схему электролитическим конденсатором, естественно, с соблюдением полярности контактов. На иллюстрации показана очень упрощенная сборка схемы, так как вся работа проводится, по сути, лишь в экспериментальных целях. В качестве нагрузки к выпрямителю подключено четыре параллельно соединенных светодиода. |
|
Теперь – практическая проверка возможностей получившегося ветрогенератора. Крыльчатке рукой придается максимально возможное вращение. Да, светодиодная сборка отреагировала свечением, но назвать это успехом – вряд ли можно. Свечение неустойчивое, довольно тусклое. А замер напряжения показывает, что на максимальных оборотах оно едва достигает 2.3 вольт. Про силу тока и говорить не приходится. Возможные причины – слишком большой просвет между якорем статора и постоянным магнитом ротора. Для режима электропривода – достаточно, а вот для генератора – явно нет. Кроме того, и магнитные качества ротора – весьма слабенькие. И плюс ко всему – часть выработанной энергии неизбежно теряется в выпрямителе. Имеет ли смысл проводить в данном случае какую-либо доработку такого генератора? – наверное, нет. Вряд ли из подобной схемы можно будет «выжать» что-нибудь серьезное. |
|
Теперь – попытка использовать в качестве генерирующего устройства электропривод от разобранного принтера. Электродвигатель здесь коллекторный, со щетками, и это позволяет снимать постоянное напряжение, не прибегая к применению диодного моста. То есть потери однозначно будут меньше. Кроме того, никаких переработок (перемоток, перепаек контактов) при этом не требуется. |
|
Соединение вала электромотора (генератора) с крыльчаткой (опять же, взятой от обычного кулера), произведено с помощью муфты-переходника, на которой расположены две пары симметрично расположенных фиксирующих винтов. | |
Одной парой винтов поджимается ось крыльчатки, второй – вал электромотора. | |
Сам электродвигатель после припаивания проводов размещается в штатном цилиндрическом кожухе. | |
При желании несложно придумать для такого ветрогенератора дополнительный корпус со стойкой (кронштейном) для закрепления, например, к оконной раме на балконе, или с подставкой, для временной установки, скажем, «на природе». Кроме того, как видно на иллюстрации, мастер придумал для своей модели еще и обтекаемый аэродинамический колпак. |
|
Что показали испытания этой модели? Если скорость ветра менее 4÷5 метров в секунду, то просто рабочей площади крыльчатки становится недостаточно, чтобы придать генератору сколь-нибудь значимую для выработки электроэнергии угловую скорость. При скорости в 5 м/с и выше ветрогенератор «оживает». Например, обеспечивает достаточно яркое свечение светодиодного фонаря. |
|
Вполне может он служить при таких условиях и источником питания для обычного небольшого радиоприемника. Уже положительный результат! |
|
А вот эксперимент с зарядкой мобильного телефона, увы, окончился неудачно. Да, на дисплее мобильника появляются признаки подключения зарядного устройства. Но этим все и ограничивается – самой зарядки не происходит. Объясняется просто – при вполне приемлемом напряжении на выходе сила тока в цепи зарядки, как показали замеры, не превышает 50 мА. То есть такой силы просто недостаточно, чтобы «впихнуть» заряд в аккумулятор. Для этого требуется хотя бы 0,5 А, то есть вдесятеро больше. |
Но все же найти применение такому мини-ветрогенератору можно – в качестве источника питания дежурного освещения, светового маячка во дворе (в саду) или, опять же, радиоприёмника при выездах на природу.
Ну и плюс опыт выполнения подобных электромонтажных работ – он для многих начинающих вообще бесценен.
Но это, конечно, «игрушки» и пора перейти к более серьезным задачам.
Какие могут быть препятствия к установке личного ветрогенератора?
Прежде чем приступать к реализации такого довольно масштабного проекта, хозяину было бы логичным поинтересоваться, не будет ли к этому препятствий, так сказать, административного плана. Что об этом говорит законодательство?
- А говорит оно то, что если выходная мощность планируемого к установке ветрогенератора не превышает 1 кВт, то это вообще рассматривается, как одна из разновидностей бытовых приборов. То есть никак не попадает ни под какую регламентацию.
А что такое мощность в 1 кВт? Не слишком много, но вполне достаточно, например, для дачного или даже небольшого жилого дома. Если не применять отопительные электрические приборы, электроплиту, бойлер и иную мощную технику, то совокупно на все освещение, питание телевизора, ноутбука, на зарядку гаджетов – с лихвой будет хватать. И даже некоторый домашний электроинструмент, при разумном подходе к одновременному подключению устройств, можно будет использовать. А с мощной аккумулирующей установкой откроются и более широкие возможности – за счет накопления энергии в периоды, когда потребление отсутствует или минимально.
- Не стоит переживать и хозяевам участков, собравшимся устанавливать более мощную систему. Порог, определяющий необходимость сертификации энергетических установок – 75 кВт. То есть никакие чиновники местной власти не имеют права своим решением потребовать прохождения каких-то разрешительных процедур.
Правда, перед началом реализации проекта стоит все же поинтересоваться особенностями регионального законодательства – нет ли там какой-то лазейки для «чиновничьего беспредела».
- Не облагаются такие электростанции и никакими налогами. Ветер пока что еще остается «бесплатным ресурсом», и если генератор используется исключительно для личного потребления энергии, то претензий к владельцам возникать не должно.
- Иное дело – конструкционные особенности ветряка. Иногда могут быть установлены ограничения на высоту мачты – этим стоит поинтересоваться заранее. Например, вблизи линий электропередач, вышек связи, аэродромов и т.п. Возможны и иные ограничения на высоту индивидуальных построек и сооружений. Иногда претензии приходят и со стороны экологических служб – дескать, самостоятельно установленные мачты могут стать помехой свободному перелету птиц. Маловероятно – но все же…
- Установленный и работающий ветрогенератор не должен стать причиной конфликта с соседями по участку. А вот здесь разнообразие претензий, в том числе и надуманных, бывает очень широким.
— Так, соседям может внушать опасение установленная мачта – что она в случае падения рухнет на забор и их участок. Вполне закономерная претензия.
— Далеко не все ветрогенераторы работают тихо. Наоборот – от некоторых исходит весьма внушительный низкочастотный шум и вибрация. И если хозяева, бывает, с этим готовы мириться, то соседям такой раздражающий фактор – совсем ни к чему. Значит, придется или договариваться, или принимать какие-то меры для недопущения сильного шума, или отказываться от ветряка.
Если вы уверены в своей правоте в этом вопросе, то уровень шума желательно измерить с помощью специального прибора — пригласить для этого специалиста и зафиксировать показатели документально. Появится весомый аргумент при решении возможных конфликтов.
— Не исключены претензии (возможно, что и «высосанные из пальца»), что после запуска такой мини-электростанции у соседей ухудшился прием телевизионного или радиосигнала, снизилось качество мобильной телефонной связи.
— Возможны и иные претензии, степень серьезности которых во многом зависит от уровня «мирного сосуществования» с соседями.
Узнайте, какие автономные электростанции для загородного дома возможно выбрать, в специальной статье на нашем портале.
Как быть? Выход видится один – договариваться заранее, а со своей стороны – постараться смонтировать систему так, чтобы она действительно причиняла минимум беспокойства (для себя же лучше). Если договоренность достигнута, и претензий к работающему вертогенератору у соседей нет, то это будет разумным закрепить каким-то произвольным, но письменным соглашением. Ощущения – дело субъективное, и то что сегодня кажется приемлемым, однажды, в период плохого настроения соседей, может «сменить полярность». И даже если вы будете уверены в том, что предъявляемые претензии надуманные – доказать обратное будет практически невозможно или чрезвычайно сложно.
- Кстати, еще раз вспомним о вибрации. Ветряки с мощностью более 1,5÷2 кВт ни в коем случае не рекомендуется устанавливать на крыше дома. Вибрационное воздействие вполне способно сделать свое «черное дело», постепенно расшатывая стропильную систему с кровлей или даже другие конструктивные элементы здания.
- При выборе места установки ветряка следует не упускать из виду и вопросы личной безопасности. Вращение лопастей даже при умеренном ветре происходит с очень высокой линейной скоростью. Случайно отколовшийся осколок или элемент крепежа может развить скорость более 100 км/час, то есть представлять весьма серьезную опасность для человека.
Насколько выгодной (или наоборот) может оказаться реализация проекта?
Как уже становится потихоньку понятно, проблем с установкой ветровой электростанции – больше, чем хотелось бы. И при этом еще необходимо трезво оценивать реальные условия. Прежде всего – средний уровень ветров, характерных для данной местности. Иногда просто не имеет смысла связываться.
На карте-схеме выше показаны примерные значения среднегодовой скорости ветра по регионам России. Понятно, что эти данные – ну очень ориентировочные. Но их всегда можно уточнить в местной метеорологической службе. Или, наверняка, их знают и в строительных компаниях города (района).
Плюс к этому (точнее сказать – минус) – свободному движению ветра могут мешать естественные (складки рельефа, высокие деревья и т.п.) или искусственные (высокая застройка) препятствия. В таких условиях приходится увеличивать высоту мачты, чтобы «поймать» ветер над препятствием, но это превращается в очень сложную, дорогостоящую и небезопасную технологическую проблему.
Наверное, будет интересно заранее посмотреть, на что можно рассчитывать. То есть какой ожидаемый приток бесплатной энергии возможен в зависимости от мощности генератора и среднегодовой скорости ветра.
Смотрим в таблицу.
(Значения паспортной мощности указаны для скорости ветра в 12 м/с – именно такой показатель очень часто встречается в технических характеристиках установок, предлагаемых в продаже – от него идёт расчет номинальных значений).
Ожидаемое количество выработанной электроэнергии (кВт в месяц) в зависимости от номинальной мощности ветрогенератора и среднегодовой скорости ветра в месте его установки.
Номинальная мощность ветрогенератора, кВт, рассчитанная для скорости ветра 12 м/с | Среднегодовая скорость ветра в месте установки ветрогенератора, м/с | |||||
---|---|---|---|---|---|---|
2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | |
0,3 | 1.5 | 3 | 4.5 | 12 | 36 | 108 |
1,0 | 4.8 | 9.6 | 14.4 | 38.4 | 115 | 345 |
2,0 | 9.6 | 19.2 | 28.8 | 76.8 | 230 | 690 |
3,0 | 14.4 | 28.8 | 43.2 | 115 | 345 | 1035 |
5,0 | 24 | 48 | 72 | 192 | 575 | 1725 |
И видим, что ожидать каких-то чудес – не приходится.
Мнение эксперта:
Афанасьев Е.В.
Главный редактор проекта Stroyday.ru.
Инженер.
Задать вопрос эксперту
Например, довольно мощный, недешевый и сложный в установке ветрогенератор паспортной номинальной мощностью в 3 кВт, размещенный на местности, где среднегодовая скорость ветра не превышает 3 м/с, выработает в течение месяца всего 43,2 кВт электроэнергии. И это еще – в лучшем случае, и без учета неизбежных потерь при передаче и преобразовании электрического тока.
Вот и считайте, какова предполагается экономия, выраженная в рублях (с привязкой к местным тарифам), и за какое количество лет ветровая энергетическая установка в таких условиях себя окупит…
Такая таблица хороша в том случае, если известна номинальная мощность приобретаемой готовой модели. А как спрогнозировать мощность, если ветрогенератор планируется изготавливать самостоятельно?
Подсчитать мощность ветрового потока можно по следующей формуле:
W = 0.5 × ρ × Sr × V³
Символами в формуле обозначены:
W — мощность ветрового потока, проходящего через определенную площадь.
ρ — плотность воздуха (можно принять усредненное значение 1,25 кг/м³).
Sr — площадь, с которой «снимается» энергия ветра. В приложении к горизонтальным ветрогенераторам – это площадь ротора, то есть круга, ограниченного длиной лопастей.
V -— расчетная скорость ветра.
Понятно, что далеко не вся энергия, переносимая ветром, будет преобразована в электрическую. Часть воздушного потока расходуется на образование завихрений, на обтекание конструкции. Кроме того, неизбежны потери общего плана, свойственные для любых механизмов – преодоление силы трения, нагрев и т.п. В итоге обычно можно всерьез говорить о полезном использовании всего порядка 30÷40% от потенциала ветрового потока.
Поэтому формулу лучше представить вот в таком виде:
Wg = 0.5 × ρ × ξ × Sr × V³ × ηg × ηr
Разбираемся с добавившимися в формулу величинами:
ξ — это коэффициент использования ветровой энергии. С некоторой долей условности его можно назвать и коэффициентом полезного действия ветрогенератора. В реальных условиях эксплуатации даже для быстроходных установок с лопастями аэродинамического профиля, при номинальных показателях скорости ветра значение коэффициента обычно лежит в пределах 0,35÷0,45. Для расчетов прогнозируемой мощности энергоустановки можно взять усредненное значение — 0,4. Только в некоторых высокотехнологичных ветрогенераторах с практически идеальными аэродинамическими формами лопастей удается достичь значения этого коэффициента в 0,5 или даже несколько выше.
ηg — коэффициент полезного действия самого генератора. Обычно не поднимается выше 0,85.
ηr — коэффициент полезного действия редуктора (если он используется в схеме). Тоже обычно ограничивается показателем 0,9. Если вращение передается на генератор напрямую, без механического преобразования, то эту величину можно оставить равной 1,0.
Вот с этой формулой уже можно подсчитать более приближенные к реалиям показатели мощности планируемого к установке ветрогенератора.
Чтобы облегчить читателю задачу, составлен специальный онлайн-калькулятор, который выполнит расчеты буквально за секунды.
Калькулятор расчета прогнозируемой мощности ветрового генератора
Перейти к расчётам
Обычно расчеты проводят для двух скоростей ветра.
- При указании среднегодовой скорости можно представить, на какое количество выработанной энергии можно рассчитывать в определенный период времени – обычно это исчисляется месяцами или даже полным годом.
- Номинальная же мощность установки обычно вычисляется по так называемой расчётной скорости ветра, которая, впрочем, не должна превышать среднегодовую более, чем в 1.5 ÷ 2.0 раза.
Итак, прежде чем приступать к реализации задуманной установки ветрогенератора, стоит все же просчитать, на что можно рассчитывать при его дальнейшей эксплуатации. В большинстве случаев говорить о реальном режиме экономии материальных средств – неблагоразумно. Затраты на приобретение системы (или комплектующих для ее создания) и ее установку ожидаются немалые, а отдача, как видно по расчетам – не особо впечатляющая.
Иными словами, такой проект можно назвать, скорее, инвестицией в будущее, но никак не ожидать от запуска энергетической установки сиюминутной отдачи. Правильнее, наверное, ее будет рассматривать в качестве вспомогательного источника энергии или резервного, на случаи перебоев в линиях электропередач, если этим грешат местные электросети.
Цены на солнечные модули DELTA
Солнечный модуль DELTA
Иное дело, если по каким-либо причинам подведение ЛЭП к объекту (дому) становится или невозможным, или чрезвычайно затратным. Тогда, действительно, приходится рассчитывать только на автономные источники электроэнергии. В таких ситуациях видится оптимальным сочетание ветрового генератора и дизельной (бензиновой) энергетической установки. При хороших показателях скорости ветра энергообеспечение ложится на ветрогенератор, в периоды штиля или очень слабого ветра придётся переходить на жидкотопливный агрегат.
Кстати, еще одним помощником в общей схеме энергообеспечения дома могут стать и солнечные батареи – этот источник при создании полностью автономной системы тоже никак нельзя сбрасывать со счетов.
Основные узлы и агрегаты самостоятельно создаваемого ветрогенератора
Еще раз повторимся – целью статьи не является публикация точных чертежей и инструкций по самостоятельной сборке ветрового генератора. По мнению автора – это и вовсе сделать невозможно, по крайней мере в полном отрыве от информации о конкретных условиях установки такой системы. А тот массив публикаций в интернете, который преподносится в качестве руководств к созданию ВУЭ своими руками – по большей части таковым не является.
Без расчетов, без детально продуманного проекта, без багажа определённых знаний и умений приступать к такому делу и вовсе не стоит. А проектирование действительно работающей и приносящей ощутимый эффект системы – все же задача для специалистов.
Но народный энтузиазм – неистребим, и многие домашние мастера на свой страх и риск все же стремятся создать такие источники автономного питания. И если желание попробовать собственные силы преобладает, то можно подсмотреть, как это уже пытались сделать другие.
Итак, конструктивно всю систему можно разделить на несколько основных узлов и агрегатов:
- Ветряк с устройством стабилизации положения и с передачей вращательного момента на вал генератора.
- Конструкция, обеспечивающая установку ветряка с генератором на требуемой высоте.
- Собственно, само генерирующее устройство, в котором происходит преобразование вращательного движения в электрическую энергию.
- Электрическая схема, обеспечивающая контроль и дальнейшее использование выработанной энергии.
Электрическую часть «оставим в покое» — здесь вообще отдельный вопрос, требующий очень пристального профессионального рассмотрения. А с остальными попробуем внести некоторую ясность.
Конструкция ветряка
Ветряк – самая заметная часть общей конструкции. Именно ему «поручается» преобразовать поступательно перемещение воздуха (ветра) во вращательное движение ротора генератора. И, как мы видели из расчетов, размеры ветряка напрямую влияют на мощностные показатели энергоустановки — чем больше площадь охватывания ветром, тем больших результатов можно ожидать.
По расположению оси вращения ветряки могут быть горизонтальными и вертикальными.
Ветряки с горизонтальной осью вращения
Ветряки горизонтального исполнения отличаются большим количеством оборотов и более высокими показателями мощности. Опять же, в силу немалой площади, с которой снимается кинетическая энергия ветра.
Лопасти ветряка могут быть жесткими или парусного типа. Но парусные, хотя они зачастую бывают и легче, и проще в изготовлении, не показывают нужных для эффективного ветрогенератора значений скорости вращения. Обычно их применяют в тех механизмах, где важно само стабильное вращение, так сказать, «ради вращения». Классическим примером могут служить ветряные мельницы или помпы.
Кроме того, парусные лопасти не столь долговечны и требуют довольно частного ремонта – перетяжки.
А для выработки электроэнергии оптимальным вариантом все же считаются жесткие лопасти с аэродинамическим профилем. При нормальном ветре за счет сочетания приложения нескольких сил они способны создавать скорость вращения в 1000 и даже более оборотов в минуту.
Кстати, гнаться за количеством лопастей – совершенно бессмысленное занятие. Оптимальную производительность как раз показывают ветряки с двумя или тремя лопастями. Если посмотреть на многочисленные иллюстрации в интернете, то видно, что преимущественно ветрогенераторы заводского изготовления – трехлопастные.
Можно, безусловно, встретит и другое количество лопастей – есть модели и вообще с одной. Но именно трехлопастные считаются той «золотой серединой», которая обеспечивает и эффективность работы, и высокие скорости, и простоту в балансировке.
А вот возрастание числа лопастей (парадоксально, но факт) только ухудшает показатели ветровой установки. Возникающие завихрения и зоны разряжения воздуха приводят к лишнему торможению вращения. Так что определяющими становятся не количество, а длина лопастей и скорость их вращения.
Несмотря на то что конфигурация лопастей – довольно сложная штука, их успешно мастерят и самостоятельно, например, раскраивая жесткие пластиковые трубы среднего диаметра. Например, канализационная труба, распущенная вдоль на четыре одинаковых сектора, послужит заготовкой для изготовления трех лопастей. (Один сектор останется в запасе – можно из него сделать лекало, чтобы в любой момент по имеющемуся образцу вырезать новую лопасть для замены вышедшей из строя).
Стоят трубы недорого, так что с формами лопастей вполне можно поэкспериментировать. Обычно вначале вырезается и обрабатывается одна лопасть. А в дальнейшем – она уже служит шаблоном для изготовления остальных.
Опытные мастера, уже опробовавшие эту схему, рекомендуют придерживаться определённого соотношения длины лопасти и диаметра предназначенной для ее изготовления трубы – 5:1. То есть, например, для метровой лопасти лучше применить трубу диаметром 200 мм.
Цены на ПВХ трубы
ПВХ труба 200 мм
В интернете можно отыскать уже готовые рекомендуемые лекала для изготовления лопастей из трубы. В таких схемах просчитаны и проставлены оптимальные размеры, и остается только перенести их на заготовки.
Для примера – парочка таких лекал для трехлопастного ветряка разного диаметра:
Чертеж 1 – лопасть из трубы 200 мм для ветряка диаметром 1700 мм
Чертёж 2 – лопасть из трубы 250 мм для ветряка диаметром 2300 мм
Естественно, изготовленные лопасти следует тщательно обработать, придав им обтекаемую форму. В ход последовательно идут напильники, надфили, мелкозернистая наждачная бумага.
Имеет значение и профиль обрабатываемой кромки. По той стороне, которая будет «разрезать» воздух, кромка шлифуется до обтекаемой округлой формы. С противоположной стороны делается заострение на внешнюю сторону – для облегчения схода с плоскости лопасти воздушного потока.
Существует и немало других, правда – более сложных в исполнении, но и более надежных вариантов изготовлении лопастей. Так, хорошими показателями традиционно обладают алюминиевые «крылья», которым может придаваться или такая же, как у трубчатых, изогнутая форма в сечении, или даже коробчатая.
Можно отыскать интересный материал по изготовлению объемных лопастей из стеклоткани с последующей пропиткой эпоксидной смолой. Для этого сначала изготавливается матрица – деревянный шаблон, выполненный точно по форме будущей лопасти.
Затем по этой матрице изготавливаются две стеклотканевые детали одной лопасти, которые впоследствии склеиваются в одну полую, очень легкую и, вместе с тем, прочную деталь. Но это уже, если честно, «высший пилотаж» мастерства, доступный только для опытных мастеров.
Лопасти после тщательно проведенной разметки крепятся к ступице винта – обычно для этого используют резьбовое соединения. А ступица уже будет непосредственно соединяться с валом генератора, или через систему передачи с повышением числа оборотов.
- Важным элементом конструкции ветряка всегда является вся флюгерная часть — поворотная станина, на которой, собственно, и размещаешься сам винт, передача и генерирующее устройство. Естественно, и материал изготовления, и сама сборка должны выдерживать немалые нагрузки, в том числе – и динамические, и вибрационного плана.
В задней части предусматривается хвостовик, который оснащается вертикальной пластиной – килем. Это позволяет правильно позиционировать винт ветряка относительно направления ветра – перпендикулярно ему. Естественно, хвостовик еще и играет роль противовеса – для балансировки всей флюгерной части ветрогенератора относительно оси мачты.
Кстати, в «продуманных» моделях ветрогенератора предусматривается система изменения угла атаки ветра – это позволяет сохранить целостность конструкции при резких порывах или аномально сильном ветре. Один из вариантов показан на схеме ниже.
Сам ветряк (поз. 1) соединён с хвостовиком, оснащенным килем (поз. 2), не жестко, а через шарнир. Кроме того, в конструкцию добавлен еще один элемент – боковая лопатка (поз. 4), которая в точке шарнира жестко соединена с ветряком и расположена перпендикулярно ему. Исходное, нормальное положение роторной части обеспечивается усилием пружины (поз. 5).
Если скорость ветра – в пределах нормы, то ветряк и хвостовик с килем, как им и положено, расположены соосно. И плоскость вращения винта – перпендикулярна направлению ветра.
При усилении ветра лопатка, за счет своей парусности, начинает, растягивая пружину, отклоняться назад, и тем самым ветер попадает на винт уже не перпендикулярно, а под определенным углом. Снижается площадь «контакта», соответственно – и мощность генератора. То есть происходит своеобразное предохранение и конструкции всего ветряка в целом, и генерирующего устройства – от перегрузки и перегорания. При очень больших скоростях лопатка и вовсе выведет ветряк из работы – плоскость вращения встанет параллельно направлению ветра.
Ветряки с вертикальной осью вращения
Такую схему тоже применяют достаточно часто, так как она обладает рядом преимуществ. Ветряки такой компоновки (их обычно называют роторными) очень чувствительны даже к небольшим скоростям ветра. Достоинством является и то, что их работа сопряжена с гораздо меньшим уровнем шума и вибрации, поэтому их зачатую без особой опаски монтируют на крышах, что для осевых ветряков, как мы помним, противопоказано. Мало того, нередко такие ветряки, исполненные «с любовью» и проявлением креативности мышления, становятся даже оригинальным украшением внешнего облика дома.
Вертикальная ось позволяет разместить тяжеловесное генерирующее устройство не на большой высоте, а в более удобном для эксплуатации и регулярного обслуживания месте. Это снимает ряд проблем, касающихся конструкции мачты.
Для самостоятельного изготовления лопастей таких ветряков широко используются разрезанные на сектора емкости – старые металлические или пластиковые бочки, выварки, баки и т.п. Вполне можно применить и обычные листы оцинкованного металла, закрепив их на рамах. Нет особых ограничений по конструкции ступицы с рамами для размещения лопастей.
Одним словом, просторов для творчества, применимого к имеющимся в хозяйстве материалам — здесь намного больше.
Но есть у них и главный недостаток, который во многом перечеркивает достоинства. Просто по своей конструкции такие энергетические установки значительно уступают в показателях мощности осевым горизонтальным. Упоминавшийся выше коэффициент использования энергии ветра при таком расположении ветряка обычно не превышает 0,2, то есть практически вдвое ниже. Да и по показателям скорости вращения они несопоставимы. Линейная скорость такого ветряка у края лопасти просто физически не может быть выше скорости ветра. А при довольно большом радиусе колеса угловая скорость и вовсе получается совсем незначительной.
А для генерирующих устройств количество оборотов зачастую является определяющим моментом, от которого зависит их возможность выработки электроэнергии. Значит, придется применять довольно сложную систему передачи вращательного момента. Это и усложняет конструкцию, и приводит к дополнительным потерям.
Впрочем, немало сторонников и именно у такой схемы – умельцы находят способы минимизировать ее негативные качества.
В контексте данной статьи к этой схеме мы больше возвращаться не станем – она требует и отдельных расчётов (показанный выше алгоритм для нее не подходит), и более глубокого изучения особенностей конструкции. Так что лучше ей отвести отдельную публикацию, которая обязательно появится на страницах нашего портала. А пока – заполним «вакуум» небольшим видеосюжетом на эту тему.
Видео: Самодельный вертикальный ветрогенератор в работе
Мачта и поворотное устройство
Ветрогенератор должен быть поднят на нужную высоту, и всей флюгерной части необходимо предоставить возможность вращаться в горизонтальной плоскости, следуя за направлением ветра.
- Мачта – один из очень непростых в изготовлении и монтаже элементов конструкции ветрогенератора. Особенно если обстоятельства вынуждают поднимать ветряк с генератором на большую высоту. Саму-то мачту порой установить не так просто – а здесь еще и массивный габаритный груз на верхушке!
Очень удачный вариант – это готовая мачта, специально предназначенная для подобных целей. В ней уже заложена шарнирная или телескопическая конструкция для последовательных действий при монтаже – крепления нижней части и затем – установка верхней части с «полезным грузом» на нужную высоту.
Такие мачты, безусловно, недешевы, но нечто подобное можно смастерить и самостоятельно из труб разного диаметра.
В любом случае мачту, конечно, в грунт не воткнешь и просто на голую землю не поставишь. Значит, ей необходим достаточно мощный фундамент. В процессе его армирования укладывается или закладная гильза, в которую впоследствии будет вставляться труба мачты, или закладные анкеры с резьбовой частью – для последующего соединения с основанием мачты.
После установки мачты она должна сразу же быть дополнительно зафиксирована растяжками. Количество и высота ярусов, количество растяжек в ярусе и удаление точек из крепления определяется специальными расчетами. Это зависит и от высоты мачты, и от материала ее изготовления, и от особенностей местности. Так что этот вопрос лучше не пускать на самотёк, а уточнить у специалистов в местной строительно-монтажной организации. Кстати, противоположный конец каждой растяжки, если он крепится на уровне грунта, потребует и себе отдельного анкерного фундамента. Так что работы предстоит много.
При необходимости большой высоты подъема ветрогенератора порой прибегают к монтажу сложной каркасной конструкции из стального проката. Надо полагать, что в таких случаях без квалифицированного проектирования и вовсе не обойтись. Такие мачты обычно имеют секционную конструкцию и последовательно монтируются от фундамента до верхушки. Хотя может быть и цельная конструкция, устанавливаемая разом.
- Безусловно, должно быть продумано подвижное соединение флюгерной части ветрогенератора с мачтой, на которой он устанавливается – для изменения положения при перемене направления ветра. Конструкция этого вертлюга может быть разной – от подшипникового узла (предпочтительно) до простейших схем «труба в трубе» или «штырь в трубе» (слишком примитивно — не исключено заклинивание).
Часто очень даже подходящие детали для такого соединения можно подыскать на барахолке старых автомобильных запчастей, а то и вовсе в своем гараже. Например, это могут быть старые ступицы колес. Кроме того, полностью готовый узел заводской сборки, с качественной системой подшипников, защищенных от внешнего воздействия, стоит поискать в каталогах – это будет проще и надежнее.
- Одной из проблем становится расположение кабеля, по которому выработанный ток должен поступать в электрическую схему системы.
Если просто пропустить кабель в полости трубы мачты – проблема не решится. Вращение флюгерной части может привести к перекручиванию проводов, что заканчивается или их обрывом, или коротким замыканием. А проконтролировать состояние становится весьма сложной задачей.
Внешнее размещение кабеля дает возможность контроля. Но от закручивания вокруг мачты все равно никуда не деться, и это запросто можно упустить из виду. Последствия будут ничуть не лучше. Кроме того, оставлять кабель, открытый все морозам и дождям — наверное, не лучшее решение.
Выход – установка подвижных коллекторно-щеточных токосъёмников. Вариантов здесь может быть немало. Так, в интернет-магазинах (на том же «Али») предлагаются готовые решения. Нередко такой токосъемный узел уже входит в состав приобретаемого поворотного механизма.
Но многие умелые мастера вполне справляются с задачей и самостоятельно. И их токосъемники ничуть не уступают в надежности и долговечности заводским моделям. А по стоимости получается гораздо выгоднее.
Пример изготовления токосъёмного узла показан на видео.
Видео: Изготовление токосъемника для ветрогенератора
Генерирующее устройство
Дошли, наконец, до «сердца» ветровой энергетической установки. Что же предпочесть в качестве прибора, где, собственно, и будет происходить процесс преобразования кинетической энергии в электрическую.
Раз тема – «своими руками», то готовые модели генераторов заводского изготовления, предназначенные именно для монтажа на ветровых установках – не рассматриваем. Чем же можно их заменить?
Вариантов предлагается немало. Но остановимся на двух – применение прошедшего доработку асинхронного трехфазного двигателя и самостоятельное изготовление так называемого аксиального генератора.
Переделка асинхронного двигателя в генератор
Асинхронные двигатели – наиболее распространенные. И найти (приобрести) такое устройство для последующей переделки в генератор – несложно.
В отличие от представленной в начале статьи принципиальной схемы генератора, наведение ЭДС будет происходить в обмотках статора. А ротор будет создавать необходимое для этого процесса вращающееся магнитное поле. Очень удобно с той точки зрения, что отпадает необходимость щеточно-коллекторного механизма со всеми присущими ему недостатками.
В исходном виде ротор асинхронного двигателя представляет собой совокупность короткозамкнутых обмоток. Чтобы он стал источником вращающегося магнитного поля используются два пути. Первый — с применением конденсаторной схемы, обеспечивающей необходимый «пусковой момент» генерации тока, то есть требуемое опережение фазы вращения магнитного поля ротора над полем статора.
Второй вариант – создание требуемого для генерации вращающегося поля высокой напряженности с помощью мощных постоянных магнитов (неодимовых). Именно этот пример рассмотрим несколько пристальнее.
Достоинством этого метода можно считать отсутствие необходимости довольно сложной в выполнении перемотки статора. То есть все ограничится только переделкой ротора. А работать такой генератор способен даже на небольших оборотах.
Иллюстрация | Краткое описание выполняемой операции |
---|---|
Переделываться в генератор будет вот такой трёхфазный асинхронный двигатель 5АИ 90L6 У2. Он в полной мере соответствует поставленной задаче. |
|
Достоинство этой модели еще и в том. Что она имеет влагозащищённый корпус с показателем IP55. В том числе предусмотрена герметизация кабельных выходов… |
|
…имеются надежные уплотнения под крышками, сальники с обеих сторон вала. Такой генератор не будет бояться ни атмосферной влаги, ни прямого попадания осадков. Да и профилактическое его обслуживание можно проводить не столь часто. |
|
Сняты крышки с обеих сторон корпуса. Хорошо видна обмотка статора. Но она остается как есть – не делается никаких изменений. |
|
Все последующий работы будут касаться исключительно ротора. Его для начала отправили к токарю. Задача – проточить, снять верхний слой, уменьшить диаметр исходя их следующих соображений: — После проточки на статор должна быть надет на горячую посадку стальной цельный цилиндрический стакан, с толщиной стенок, допустим, 4 мм. — На этот стакан будут наклеиваться неодимовые магниты (в рассматриваемом примере – толщиной 5 мм). — И после этого итоговый диаметр ротора должен получиться таким же, каким был до доработки, то есть с минимальным зазором от зубьев статора. |
|
Ротор, пришедший после токарной обработки. Хорошо виден гладкий стакан, пришедший на смену короткозамкнутым обмоткам. На поверхность этого стакана и будут приклеиваться постоянные магниты. |
|
Но для начала необходимо измерить линейные параметры стакана (длину по оси и длину окружности) и составит схему расположения магнитов. Она как раз должна уместиться в прямоугольнике с этими снятыми размерами. Необходимо определиться с количеством полюсов. Можно встретить разные рекомендации. Например, количество полюсов должно соответствовать количеству полюсов двигателя (оно указывается в маркировке, и в данном случае об этом говорит цифра 6). Другой совет – подсчитать количество зубьев обмотки статора и уменьшить его на четверть. Например, 16 зубьев – значит оптимально будет сделать на роторе 12 полюсов (два магнитных полюса ротора на три катушки статора). |
|
Полюс – это одна или несколько линий магнитов вдоль оси вращения, по длине ротора. Количество линий зависит от количества полюсов, размеров приобретённых магнитов и длины окружности – так, чтобы поместилось как можно больше магнитов с шагом примерно в 0,5 диаметра. Между полюсами может быть промежуток и несколько больше, но только равный на всех границах полюсов. В данном случае мастер делает шесть полюсов по четыре линии магнитов в каждом. Используются магниты толщиной 5 мм и диаметром 9 мм. В линии умещается 14 магнитов. Значит, общее количество – 336 шт. Получилось довольно удачно – при соблюдении равного расстояния между магнитами между полюсами отсутствуют расширенные просветы. То есть равный шаг выдерживается и вдоль оси, и по окружности. Но нередко получается и так, как показано на иллюстрации. Каждый случай в этом вопросе – индивидуален. |
|
Еще один нюанс. Чтобы исключить залипание ротора, рекомендуется линии магнитов делать не строго параллельными оси, а с небольшим скосом, примерно на ширину одного магнита. На иллюстрации (взятой из другого примера) весьма наглядно показано – и расположение одного полюса из пяти линий магнитов, и скос этих линий относительно осевой линии. |
|
Следующая проблема – как перенести разметку на цилиндрическую поверхность ротора? Один их способов – это изготовление специальной «шубы»-шаблона. На поверхности ротора вначале простилается слой полиэтиленовой пленки, а затем производится намотка нескольких слоев бинта (марли). После этого (или в ходе намотки, как удобнее) ткань обильно пропитывается эпоксидной смолой. Когда смола полностью застынет, поверхность слегка дорабатывается на токарном станке до идеальных форм. После этого получившуюся цилиндрическую шубу можно снять. Далее, на нее наклеивается составленный в графическом редакторе и распечатанный на принтере шаблон. Затем с помощью шуруповерта (дрели) со вставленным сверлом нужного диаметра (по размеру магнитов) по шаблону сверлятся отверстия. Следующим шагом «шуба» вновь надевается на ротор, и в проделанных гнездах к корпуса ротора на эпоксидку вклеиваются магниты. |
|
Другой способ – наклеивание магнитов на суперклей к стакану ротора прямо через бумажный шаблон. Много возни, правда, с вырезанием в напечатанной схеме большого количества аккуратных небольших отверстий, так чтобы не случилось разрывов между соседними ячейками. |
|
Но выход всегда найдется. Например, мастер вспомнил из своего детства, как можно «прорезать» бумагу, несколько раз проведя по одной линии шариковой ручкой. Изготовлен из стальной пластинки небольшой шаблон – и вперед… |
|
Готовый шаблон. | |
Шаблон ровно наклеен на стакан ротора. Очень важный момент – в одном полюсе, независимо от количества линий в нем, магниты должны быть сориентированы одинаково. Например, северным полюсом вверх. На следующем – наоборот, и так далее по окружности. Если не полагаетесь на свою внимательность, чтобы не допустить ошибки, на бумажном шаблоне можно заранее провести границы полюсов с указанием, какой стороной вверх должны расположиться магниты. И перед каждым вклеиванием очередного магнита – убеждаться, что он становится правильно. |
|
Наклеивание производилось на обычный суперклей «Момент». Надо правильно понимать, что это пока – временная фиксация. |
|
Начинается вклеивание – по линиям, с соблюдением полярности. Работа, конечно, утомительная, требующая внимательности и аккуратности, и заняла она у мастера практически два дня. |
|
Вот что получилось в итоге. Кстати, на иллюстрации хорошо видно, как мастер отмечал маркером границы полюсов, по четыре линии. |
|
Получившийся ротор будет заливаться эпоксидной смолой. Но прежде мастер решил выполнить армирование конструкции с помощью толстой капроновой нити. Как у него получилось – показано на иллюстрации. Мера, может быть, и необязательная, но то, что она даст выигрыш в прочности ротора при любых скоростях вращения – это неоспоримо. Так что можно только позавидовать основательности подхода. |
|
Далее, делается опалубка для заливки эпоксидки. С нижнего торца устанавливается кружок, вырезанный их картона. Все щели между ним и валом ротора заклеиваются пластилином. |
|
По поверхности цилиндра опалубкой станет слой наклеенного прозрачного скотча. | |
А с верхнего торца намеренно оставленный излишек скотча становится своеобразной воронкой, в которую как раз и будет заливаться эпоксидка. | |
Ротор устанавливает вертикально, и в воронку сверху заливается подготовленная эпоксидная смола. | |
Эпоксидка, хоть и не быстро, но уверенно протекает вниз, заполняя все полости и пропитывая капроновую нить армирования. Так продолжают, пока вся опалубка не будет заполнена доверху. После этого эпоксидке дают нужное время на полное застывание. |
|
А это – ротор уже после снятия картонной опалубки. | |
Согласитесь – получилось замечательно. И никаких опасений за то, что какой-то магнит вдруг вылетит при работе генератора, быть не должно. |
|
На вал ротора вновь запрессованы подшипники, вставшие на свои места… | |
…и можно устанавливать ротор в корпус двигателя (точнее – уже генератора). | |
Кстати, очень ответственный момент. Ротор нужно очень крепко удерживать в руках. Притягивающая сила магнитов настолько велика, что известны случаи, когда ротор вырывался из рук и даже выламывал неснятую крышку электродвигателя. |
|
Все, ротор заведен в статор генератора. | |
Можно устанавливать и фиксировать болтами переднюю и заднюю крышку генератора. | |
После установки крышек, когда подшипники точно займут свое место, ротор и статор должны встать строго соосно. Необходимо сразу проверить свободу вращения ротора – не задевает ли он зубья обмотки статора. При правильных расчетах размеров и аккуратном исполнении – не должен. Не должно быть и чувствительных залипания положения статора – этому способствует выполненный скос линий магнитов. |
|
Ну что ж, можно переходить к проверке работоспособности получившегося генератора. Крутящий момент на его вал будет передаваться с помощью мощной электродрели. Она способна выдать до 1000 оборотов в минуту. |
|
Подключаются щупы тестера. В данном случае генератор выдает переменное трехфазное напряжение, схема выполнена «звездой». То есть проверку напряжения можно проводить между любыми из двух фаз. |
|
Мультиметр переводится в режим измерения переменного напряжения (ACV) с пределом 750 вольт. | |
Включается питание на приводе – электродрели. И уже в момент страгивания ротора и первичного набора оборотов на дисплее прибора уже показывается напряжение более 60 вольт. |
|
А когда обороты набраны и стабилизировались, мультиметр показывает устойчивое напряжение в 375÷377 вольт. | |
Можно смело констатировать, что генератор получился вполне работоспособным и готовым к дальнейшему использованию в ветровой энергетической установке. |
Безусловно, скорости вращения в 1000 оборотов в минуту от ветряка ожидать сложно. Но и того, что будет на выходе в реальных условиях эксплуатации при нормальном ветре должно с лихвой хватать для зарядки аккумуляторов и для подключения довольно значительной нагрузки.
Чтобы несколько расширить информацию о переделке асинхронного двигателя в генератор, предлагаем посмотреть еще один видеосюжет на эту тему. Там мастер дает некоторые разъяснения по часто возникающим вопросам.
Видео: Вариант переделки асинхронного двигателя в генератор переменного тока
Изготовление аксиального генератора
С появлением в свободном доступе мощных неодимовых магнитов появилась возможность самостоятельного изготовления производительных генерирующих устройств или, как мы видели на предыдущем примере – совершенствования имеющихся изделий. Одной из схем, набирающих популярность, является так называемый аксиальный генератор.
Эта схема привлекает тем, что ее полностью, от начала до конца, можно изготовить самостоятельно. То есть для этого не требуется ни старых генераторов, ни электродвигателей. Могут оказать помощь некоторые автомобильные запчасти (колесная ступица, например), но только в плане облегчения создания системы взаимно вращающихся узлов.
О самостоятельном изготовлении аксиального генератора много говорить не будем. По той причине, что на предлагаемом видео очень подробно показаны все моменты, от принципа устройства прибора и до запуска в эксплуатацию.
Видео: Принцип работы и устройства компактной ветровой энергетической установки с аксиальным генератором
Видео: Подробное разъяснение процесса изготовления аксиального генератора
Видео: Схема подключения и проведение тестирования аксиального генератора.
* * * * * * *
Итак, на этом закончим получившийся довольно объемным обзор, касающийся проблемы самостоятельного изготовления ветровой энергетической системы. Читатель, должно быть, смог убедиться в том, что задача эта – из разряда повышенной сложности. Кроме того, она неизбежно потребует немалых финансовых и трудовых затрат. А ожидать какого-то скорого эффекта от личной ветровой электростанции – пока не приходится.
Однако, уверен, что некоторых домашних мастеров ни один из перечисленных аргументов не остановит. Что ж, хочется искренне пожелать им удачи! А если им будет, чем поделиться (неважно, успехом или неудачным опытом) – с удовольствием предоставим им для этого страницы нашего портала.
И еще одно. Автор публикации будет считать свою миссию выполненной в обоих случаях. И тогда, когда приведенные доводы несколько охладят пыл слишком рьяного искателя бесплатной энергии. И в том случае, если после прочтения статьи найдутся те, кто скажет – «Как же все это интересно! Обязательно попробую!»
Ветрогенератор на 220В своими руками: поэтапный процесс сборки и изготовления самодельного ветряка (схемы, монтаж, подключение)
Тарифы на услуги электроэнергии с каждым годом только растут, что заставляет хозяев частных домов задумываться об альтернативных источниках питания. Тщательно изучив устройство и принцип работы ветрогенератора, можно с уверенностью сказать, что это приспособление будет практичным в хозяйстве.
Идеальным местом для монтажа специалисты считают те районы, где регулярно дуют ветра, ведь агрегат использует силу потока воздуха для выработки электричества.
Создать некоторые экземпляры получится самостоятельно, чтобы сэкономить бюджет семьи и сконструировать действенное приспособление следует придерживаться инструкции. Во время процесса энергия может сразу поступать к потребителю или накапливаться в аккумуляторе, что довольно удобно в быту.
Ветрогенератор 600 ватт
Неоспоримая польза ветрогенератора
После просмотра многочисленных фото самодельного ветрогенератора, интересующиеся работой личности сталкиваются с вопросом, а насколько практичным будет стационарная установка.
Конструкция способна выступать в роли дополнительного и постоянного источника электроэнергии.
Благодаря функционированию устройства, получится эксплуатировать такие приборы как:
- Лампы.
- Отопительное оборудование.
- Бытовую технику.
- Бойлеры.
Отлично зарекомендовали себя схемы, которые предполагают наличие аккумулятора, в нем накапливается ресурс, если необходимости снабжения постройки на данный момент нет.
Важно! Для реализации качественного обогрева всей площади постройки достаточно создать конструкцию с показателем мощности в 4 кВт.
Стриппер Tools DL381008 желтый
Выбор генератора
Прежде чем переходить к непосредственным работам по конструированию модели с учетом пошаговой инструкции, как сделать ветрогенератор, потребуется определиться с основным движущим элементом.
Сердце всей системы можно выбрать на свое усмотрение, не исключаются такие детали как:
- Тракторный генератор.
- Составляющая от ПК или ЭВМ.
- Мотор от дворников автомобиля.
- Элементы от старой стиральной машины.
При желании можно купить заводскую модель в специализированном магазине, но максимально сэкономить бюджет семьи без подручных материалов не получится.
Отвертка крестообразный наконечник Xiaomi MJJXLSD002QW
Подготовка каркаса
В конструкцию ветрогенераторов входят крутящие детали, взглянув на них со стороны, можно заметить сходство сборного элемента с ветряной мельницей.
Для создания лопастей применяют несколько типов материалов, нужно выбрать самый долговечный и удобный для совершения манипуляций тип жесткости.
Из доступных каждому хозяину составляющих стоит выделить:
- Фанеру.
- Пластик.
- Металл.
- ПВХ.
При рассмотрении будущих размеров модели, собираемой самостоятельно, нужно также учесть силу ветра в регионе проживания, количество лопастей, высоту монтажных креплений.
Плоскогубцы ВИХРЬ 73/6/3/8 200 мм
Изготовление мачты
Чтобы поднять и зафиксировать основную конструкцию на определенное место, потребуется создать устойчивую мачту.
Для ее изготовления зачастую используют металлическую трубу, швеллер или уголки.
- Деревянные элементы не смогут прослужить достаточно долго даже после обработки поверхности деталей специальными жидкостями, прочность также будет низкой.
- Сваривать заготовки на стадии монтажа необязательно, ведь специального оборудования для этих целей может не найтись.
- Зачастую все детали каркаса собираются при помощи гаек и болтов, а также других не менее практичных крепежей.
Индикаторная отвертка SmartBuy, 150 мм, до 500 В, шлицевая, серт. испытания
Инструмент для процесса
При выборе самого прочного и долговечного материала, такого как металл, необходимо побеспокоиться о средствах индивидуальной защиты, перчатки, защитные очки и одежда с длинными рукавами будут незаменимы.
Во время резки заготовок электроинструментом лучше надежно закреплять куски металла в тисках, мелкие элементы стоит подгонять специальными ножницами, чтобы изделие выглядело аккуратно. Отвертки, ключи, рулетка, угольник и маркер подготавливаются заранее, чтобы приступив к реализации задуманного меньше отвлекаться от процесса.
Аккумуляторная дрель-шуруповерт Hammer ACD12/2С 216-022
Модель из автомобильного генератора
Существует несколько принципиально важных моментов, касающихся сборки подобного типа приспособления. Чтобы добиться хорошей эффективности устройства, нужно переделать генератор и оснастить его постоянными магнитами.
Движущие элементы следует создавать с учетом мощности мотора, если заготовки будут очень тяжелыми, то на малых оборота ветрогенератор может заклинивать. Для конструирования лопастей отлично подойдет труба большого диаметра из дюраля, этот материал отличается высокими показателями долговечности.
Крепеж должен быть максимально надежным, дело касается не только стягивающих составляющих, но и стоек, их жесткость подгоняется соответственно нагрузке приспособления.
Совет! Без предварительной балансировки лопастей обойтись трудно, для облегчения некоторых частей конструкции можно использовать наждачную бумагу или болгарку со шлифовальным кругом.
Зубило скарпель JCB JCL008
Рекомендации экспертов
Браться за самостоятельную работу должны только те личности, которые досконально разбираются в электрике, а также придерживаться специально разработанных схем.
- Выбор источника питания не менее важен, чем закупка материалов для каркаса, отлично зарекомендовали себя генераторы переменного тока и асинхронные двигатели.
- Организовывая место для монтажа, следует учесть несколько нюансов, опора должна полностью соответствовать нагрузке, особенно если приспособление находится на крыше здания.
- После произведения манипуляций у разных мастеров получались агрегаты весом от 200 до 800 кг, довольно увесистые образцы.
- На земле лучше залить площадку из бетона, чтобы при порывах ветра конструкцию не вырвало, ее крепят к плотному и устойчивому основанию.
Неодимовые магниты обладают высокими показателями производительности, такие элементы часто используются в ветрогенераторах, при работе с ними необходимо проявить максимум осторожности. В момент продумывании формы готового изделия лучше выбрать круглый или прямоугольный тип движущей детали.
Мультиметр цифровой RGK DM-10 красный/черный
Фото самодельного ветрогенератора на 220В
Ветрогенератор на заднем дворе
Время на прочтение
7 мин
Количество просмотров 138K
Настоящий ветрогенератор — это слишком дорого в том случае, если его планируется использовать для решения простых домашних задач, не требующих большой мощности. Если всё, что нужно — это немного энергии для LED-освещения или для проекта, основанного на Raspberry Pi Zero, это как-то несоразмерно довольно серьёзным деньгам, которые придётся заплатить даже за небольшой ветряк. То же касается и школьных экспериментов, время и деньги, уходящие на организацию которых, обычно стараются свести к минимуму. Школы часто стеснены в средствах.
В этом материале мы расскажем о том, как создать собственный маленький ветрогенератор. Делать мы его будем из велосипедных запчастей и из того, что можно купить в строительном магазине. Стоимость проекта находится где-то в районе $80-150. На создание генератора уйдёт 8-16 часов. При ветре, который чуть сильнее «слабого ветра» по шкале Бофорта, наш генератор способен дать около 1 ватта мощности. Этого достаточно для того чтобы зарядить небольшую батарею, а значит, энергия у нас будет и в безветренную погоду.
Домашний ветрогенератор
Описываемая здесь маленькая ветряная турбина — это, по сути, экспериментальный проект, в ходе работы над которым можно освоить основы ветроэнергетики. Эту турбину нельзя назвать абсолютно надёжным источником энергии. Не стоит ждать от неё чудес! Кроме того, учитывайте, что сильный ветер опасен для нашей турбины. Эта машина не рассчитана на нормальную работу при таком ветре. Он её, скорее всего, разрушит. Поэтому турбину стоит убирать в плохую погоду. В частности, нужно учитывать то, что её обломки, носимые ветром, могут кого-нибудь поранить.
В отличие от типичных коммерческих турбин с горизонтальной осью вращения, оснащаемых тремя лопастями, закреплёнными на горизонтальном валу, в нашем проекте используется вертикальный вал ротора. Это избавляет нас от необходимости в механизме, учитывающем направление ветра, и сильно упрощает проект турбины. Наш генератор, в сущности, представляет собой велосипедное колесо, смонтированное на вертикальной стойке, которое связано с электрическим генератором. В роли лопастей ротора используются восемь «полутруб», вырезанных из дешёвых пластиковых (PVC) канализационных труб и прикреплённых к ободу колеса.
Турбина начинает вращаться при достижении ветром силы, примерно соответствующей 2 баллам (около 6 км/ч) по шкале Бофорта (смотрите таблицу ниже). Если сила ветра достигает 5 по шкале Бофорта (около 30 км/ч), турбина даёт около 1 ватта мощности (по нашим измерениям — 147 мАч при 6,7 В).
Шкала Бофорта (по материалам Википедии)
Шкала силы (скорости) ветра, используемая в наши дни, разработана в 18 веке британским моряком Сэром Френсисом Бофортом (1774 — 1857). Но его нельзя назвать первым, кто приложил усилия к созданию подобной шкалы. Шкале Бофорта предшествовали другие работы, в частности, характеризующие силу ветра по его воздействию на лопасти ветряных мельниц (инженер Джон Смитон, 1759). В том же направлении работал британский географ и гидрограф Александр Далримпл (1737 — 1808). Ещё более ранние шкалы силы ветра созданы астрономом Тихо Браге (1582), естествоиспытателем Робертом Гуком (1663) и Даниэлем Дефо (1704) — купцом, мятежником, шпионом и автором «Робинзона Крузо». В 1829 году Френсис Бофорт был назначен гидрографом Британского Адмиралтейства и передал свою шкалу всем, кому она могла понадобиться. С тех пор шкала Бофорта стала стандартным инструментом для измерения силы ветра.
Материалы и инструменты
Материалы:
- Переднее велосипедное колесо диаметром 28 дюймов и электрический генератор. Я купил новый генератор на eBay за €40, но в Европе часто встречаются подержанные генераторы. В США можно найти такой на eBay, а можно купить дешёвую динамо-втулку Shimano и установить её в старое колесо.
- 2 4-дюймовые PVC-трубы (условный проход трубы — 110 мм) длиной 2 метра. Я использовал тонкостенные трубы, но то, какими именно они будут, особой роли не играет.
- 16 крепёжных винтов с гайками и с большими шайбами. Длина и диаметр винтов зависят от характеристик обода колеса.
- Стальная водопроводная оцинкованная труба диаметром 1 1/2 дюйма с резьбой по обоим концам. Её длина (высота мачты ветряка) подбирается самостоятельно и зависит от условий, в которых придётся работать генератору.
- Стальная трубопроводная арматура для водопроводной трубы 1 1/2 дюйма. Торцевая заглушка (она совершенно необходима) и тройник (необязательно).
- Повышающе-понижающий (buck-boost) преобразователь напряжения DC-DC, такой, как Mesa #DSN6009 4 A. Я рекомендую преобразователь с выходной мощностью 30 Вт.
- 2 электролитических конденсатора, 2200 мкф, как минимум 12 В.
- Мостовой выпрямитель. Минимум — 500 мА.
- Диод 1N4007.
- Термоусаживаемые трубки или изолента.
- Проволочные тросы и винты с петлями (необязательно). Всё это может понадобиться для фиксации мачты.
- Мешок цемента (необязательно). Может понадобиться для крепления мачты.
Инструменты:
- Ножовка или электролобзик для резки тонких PVC-труб.
- Дрель со свёрлами для пластика и металла.
- Отвёртка и/или гаечный ключ и комплект насадок, подходящих для используемых винтов, гаек, болтов.
- Паяльник и припой.
Делаем ветрогенератор из велосипедного колеса
Начнём работу над ветрогенератором. Мы будем пользоваться мачтой, сделанной из стальной водопроводной трубы, которая, возможно, будет закреплена в земле с помощью бетона. Принимая решение о высоте мачты и о способе её крепления стоит почитать местные законы. Возможно, в зависимости от условий эксплуатации генератора, мачту понадобится закрепить с использованием растяжек.
▍1. Вырезание лопастей турбины
Рис. A
Мы использовали тонкостенные канализационные PVC-трубы (Рис. A). В Германии, где я живу, такие трубы окрашены в оранжевый цвет, в Северной Америке такие трубы обычно белого цвета.
Рис. B
Мы, с использованием пилы, можем вырезать 4 лопасти из одной двухметровой трубы (Рис. B). Нам нужно 8 лопастей. Постарайтесь резать трубы точно по центру. В идеале все лопасти должны иметь одинаковый вес.
▍2. Прикрепление лопастей к генератору
Рис. C
В роли генератора мы используем велосипедное колесо (обод) с закреплённым в нём генератором (Рис. C). Лучше всего подходят колёса с алюминиевым ободом, так как их легче сверлить. Если вы взяли колесо от старого велосипеда — не забудьте снять с него шину, камеру и тормозные диски.
Рис. D
Прикрепите к колесу лопасти так, как показано на Рис. D, используя 2 винта, гайки и большие шайбы. Лопасти должны быть распределены по ободу равномерно (возможно, вам в этом поможет подсчёт количества спиц между лопастями) и выровнены по центру обода.
▍3. Сборка мачты
Рис. E
Мачту мы будем делать из оцинкованной стальной водопроводной трубы с резьбой на обоих концах. В торцевой заглушке (Рис. E) надо просверлить 9-миллиметровое отверстие и прикрутить колесо к заглушке, пропустив через это отверстие ось генератора с резьбой (Рис. F ниже). После того, как мачта будет надёжно закреплена (!), можно прикрутить к ней заглушку.
Рис. F
В деле надёжной установки мачты может пригодиться тройник, прикрученный к той части трубы, которая будет закреплена в земле и залита бетоном. Тройник позволит надёжно зафиксировать мачту в бетоне. При этом вес бетона должен быть достаточно большим для того чтобы поддерживать и фиксировать мачту. Вся конструкция должна быть надёжно закреплена. В результате, если ожидается буря, можно просто открутить нижнюю часть мачты от бетонного основания и убрать турбину в безопасное место.
Не стоит недооценивать силу, с которой ветер воздействует на окружающие предметы. Эта сила возрастает пропорционально кубу (третьей степени) скорости ветра! Поэтому, если нужно, зафиксируйте мачту с помощью растяжек.
▍4. Сборка электронных компонентов
Рис. G
Наша ветроэлектростанция рассчитана на зарядку свинцово-кислотного аккумулятора с помощью тока, генерируемого динамо-машиной. Используемый нами электрогенератор вырабатывает переменный ток, который мы преобразуем в импульсный постоянный ток, используя мостовой выпрямитель. Этот ток, для его сглаживания, передаётся на два электролитических конденсатора ёмкостью 2200 мкф.
Сглаженный постоянный ток затем подаётся на повышающе-понижающий преобразователь (на eBay он стоит примерно $10), который используется в роли регулятора зарядки аккумулятора. Он преобразует входное напряжение, находящееся в диапазоне от 1,25 до 30 В, в заданное постоянное напряжение. Мы установим выход конвертера на 0,7 вольта выше конечного напряжения заряда аккумулятора (для компенсации прямого напряжения диода). Диод 1N4007 нужен для того чтобы предотвратить обратный ход тока от аккумулятора к конвертеру.
Например, 6-вольтовый свинцово-кислотный аккумулятор имеет напряжение зарядки 7,2 В. Учитывая необходимость добавления прямого напряжения диода, которое равняется 0,7 В, конвертер нужно установить на выходное напряжение в 7,9 В.
Электрическая нагрузка (это может быть что угодно, например — светодиод) будет подключена к выходам аккумулятора. Учитывайте то, что эта нагрузка должна поддерживать выходное напряжение, установленное на конвертере. Сам генератор может быть способен дать лишь небольшой ток, а батарея может выдать несколько ампер. Последствия короткого замыкания могут быть весьма печальными (может случиться пожар). Для того чтобы предотвратить несчастные случаи, нужно, независимо от того, что именно вы подключаете к ветрогенератору, принимать соответствующие меры безопасности.
Штормовое предупреждение!
После того, как электронные компоненты генератора собраны, всё готово к тому, чтобы превратить силу ветра в электроэнергию! Теперь перед вами раскрываются возможности владельца ветрогенератора.
Наш генератор, правда, это всего лишь экспериментальное устройство, недорогая практическая демонстрация принципов работы ветряных турбин, которая может найти применение, например, в школах. Эта турбина не рассчитана на работу при сильном ветре. Когда турбина не используется, или если сила ветра превышает 6 по шкале Бофорта, всю конструкцию нужно разобрать и куда-нибудь спрятать.
Велосипедное колесо и лопасти из труб не рассчитаны на постоянное использование, в особенности — при сильном ветре. Вы можете сами усилить конструкцию в том случае, если хотите, чтобы ветрогенератор работал бы на постоянной основе. (Правда, надо сказать, что моя конструкция оказалась прочнее, чем я ожидал. Я оставил её в саду и она работала там при любой погоде — до тех пор, пока не вышла из строя одна из растяжек. Тогда мачта рухнула и сломалась одна из лопастей турбины.)
Если вас интересует тема ветрогенераторов — можете взглянуть на этот материал и посмотреть это видео. Загляните на этот сайт, посвящённый генератору Chispito. Вот и вот — ещё пара полезных ресурсов.
А вы хотите построить собственный ветрогенератор?
Источник электричества
Как минимум 1 раз в год увеличиваются тарифы на услуги электроэнергии, зачастую — в несколько раз. Это бьет по карману граждан, зарплата которых не растет столь же стремительно. Домашние умельцы раньше прибегали к простому, но довольно небезопасному и незаконному способу экономии на электроэнергии. Они прикрепляли к поверхности расходомера неодимовый магнит, после чего тот приостанавливал работу счетчика.
Если указанная схема изначально работала слаженно, то в дальнейшем с ней возникали проблемы. Объяснялось это несколькими причинами:
- Контролеры стали чаще ходить по домам и проводить внеплановые проверки.
- На счётчики стали приклеивать особые стикеры, под воздействием которых стали темнеть магнитные поля. Соответственно, вычислить такого нарушителя не составляло проблемы.
- Стали выпускаться новые счётчики, которые не имели восприимчивости к магнитному полю. Вместо стандартных моделей появились электронные узлы.
Всё это подтолкнуло людей к поиску альтернативных источников электроэнергии, к примеру, ветрогенераторов. Если человек проживает в областях, где регулярно дуют ветры, такие приспособления становятся для него «палочкой-выручалочкой». Устройство использует силу ветра для получения энергии.
Корпус оснащен лопастями, приводящими в движение роторы. Электроэнергия, полученная таким образом, трансформируется в постоянный ток. В дальнейшем она переходит к потребителям либо накапливается в аккумуляторе.
Самодельный ветрогенератор может выступать в качестве главного или дополнительного источника энергии. В качестве вспомогательного устройства он может греть воду в бойлере либо подпитывать домашние светильники, тогда как вся остальная электроника работает от главной сети. Возможна работа таких генераторов и в качестве главного источника там, где дома не подключены к электричеству. Здесь устройства подпитывают:
- лампы и люстры;
- отопительное оборудование;
- бытовую электронику.
Ветровая электростанция способна подпитывать низковольтные и классические приборы. Первые работают от напряжения 12−24 Вольт, а ветрогенератор способен обеспечивать мощность на 220 Вольт. Он изготавливается по схеме с использованием инверторных преобразователей. Электричество накапливается в его аккумуляторе. Есть модификации на 12−36 Вольт. Они отличаются более простой конструкцией. Для них применяются стандартные контроллеры заряда аккумулятора. Чтобы обеспечить обогрев жилища, достаточно сделать ветрогенераторы своими руками нa 220 В. 4 кВт — это мощность, которую обеспечит их двигатель.
Какой выбрать ветрогенератор для частного дома
Ветрогенератор (ветряк) — это устройство, преобразующее кинетическую энергию ветра в механическую с последующим переводом в электричество. Производство ветрогенераторов в России за последние годы значительно выросло вместе интересом потребителей. Сегодня на рынке представлены импортные и российские ветрогенераторы мощностью от 0,1 до 70 кВт. Купить ветрогенераторы для дома можно в перечисленных ниже компаниях, продукция которых наиболее популярна у потребителей:
- ООО «Ветро Свет» (Санкт-Петербург), мощность ветряков 0,25–1,5 кВт;
- ООО «СКБ Искра» (Москва), мощность 0,5 кВт;
- OOO «ГРЦ-Вертикаль» (Челябинская обл., Миасс), мощность 1,5–30 кВт;
- ООО «Сапсан-Энергия» (Московская обл.), мощность 0,5–5 кВт;
- ЗАО «Ветроэнергетическая компания» (Санкт-Петербург), мощность 5 и 30 кВт;
- ЛМВ «Ветроэнергетика» (Хабаровск), мощность 0,1–10 кВт.
Различают бытовые и промышленные ветрогенераторы:
- Бытовые ветрогенераторы ‑ ветряки небольшой мощности, достаточной для обеспечения энергией частного дома. Для их работы нужна постоянная скорость ветра от 4 м/сек, а последние разработки оборудования позволяют вырабатывать электроэнергию и на слабых ветрах.
- Промышленные ветрогенераторы имеют мощность в несколько мВт. Такие установки работают на крайнем севере в районах с постоянными сильными ветрами.
Необходимые условия для эксплуатации вертогенератора:
- среднегодовая скорость ветра не менее 4 м/сек;
- свободное место для установки ветряка (лучше на возвышенности);
- официально согласовывать установку с местной администрацией не потребуется — следует просто поставить ее в известность;
- согласие соседей на установку — шум, создаваемый ветряком, может вызвать недовольство живущих рядом людей;
- кроме самой установки, понадобится масса дополнительного оборудованная: аккумуляторы, инвенторная установка, система управления, мачта.
Как сделать ветряк своими руками
Вертикальные ветрогенераторы являются наиболее эффективными и простыми в изготовлении и эксплуатации, что обуславливает их достаточную распространённость, будь то спиральный или прямой механизм.
Большое значение имеет, как цель создания ветрогенератора, так и местность, на которой он будет установлен, от чего и следует отталкиваться при планировке.
Существуют основные моменты, требующие обязательного внимания, при создании ветрогенератора. Первое, что следует определить, – конечно же двигатель всего прогресса, сердце всей системы – генератор, который можно как приобрести, так и сделать самому, что, в сущности, требует определённой сноровки и умений, однако, при должном желании, можно справиться и новичку. В зависимости от поставленной цели, хотите серьёзный аппарат на 10кВт, 5кВт (5kW) или менее мощный на 12V, или более маленький и простой ветродвиатель велосипедного образца, используемый, как электрическая установка на балконе квартиры.
Ветровик может быть оснащён практически любым генератором:
- Будь то многим известный сельский тракторный генератор;
- Деталь из старого компьютера или ЭВМ;
- А может быть это малошумный автомобильный мотор;
- Элемент двигателя стиральной машины, имеет значение лишь его работоспособность.
Далее определяемся с лопастями – теми самыми крутящимися объектами, напоминающими лопасти мельницы. Лопасти можно изготовить из также большого количества материалов, наиболее перспективными и распространёнными из которых являются, например, фанеры, пластика, иногда жести (краёв бочки, например), ПВХ материала и так далее. При изготовлении, следует учитывать все существенные факторы – как влияние центробежной силы, так и размеры лопастей, поток ветра на местности и другие. Наиболее рационально создавать крыльчатого характера, в силу повышения эффективности, путём влияния на распределение ветрового потока.
Следующий шаг – изготовление прибора для определения скорости и направления ветра – флюгера. Представляет собой что-то вроде металлического флажка, изменяющего своё положение в соответствии с потоками ветра. В роль флюгера может подойти практически любой сравнительно прочный, но лёгкий слой металла.
Мачта – в её роли может использоваться также широкий спектр подручных средств, например, прочная водопроводная труба. Самодельный ветряной аппарат (самоделки) вполне реально изготовить самому, как уже было описано, из максимально доступных средств, при чём сила ветряка зависит от используемых материалов и продуманности использования в конкретных условиях. Самый простой представитель таких устройств вполне способен создавать электричества на освещение помещения, зарядки устройств, а при должном желании, даже для обеспечения базовых нужд сравнительно небольшого загородного домика.
Мощные модели
Самостоятельное изготовление мощных моделей ветрогенераторов требует больших усилий и теоретической подготовки. Прежде всего, требуется создание мощного генератора, требующего расчетов, правильной сборки, использования качественных материалов. Кроме того, надо сделать ротор, действующий при слабых ветрах, но способный создавать достаточное усилие для генератора. Также потребуются соответствующие устройства обработки электротока, каркас, мачта и прочие элементы конструкции и электроники.
Ветрогенератор мощностью более 1 киловатта
Ветряки подобной мощности имеются в продаже. Покупка установки позволяет получить готовое устройство с заранее известными параметрами, изготовленное из соответствующих материалов. Цены на такое оборудование начинаются от 30000 руб, что доступно не каждому пользователю.
Кроме того, потребуется сопутствующая электроника, аккумуляторы и прочая аппаратура, что увеличит расходы примерно вдвое. Дороговизна установок является основной причиной распространения моделей ветряков, сделанных своими руками.
Вертикальный ветряк своими руками (5 квт)
Существует несколько вариантов изготовления устройство такой мощности:
- роторная конструкция
- цепочка парусных крыльчаток, установленных последовательно
- использование аксиального генератора на неодимовых магнитах
Выбор наиболее удобного варианта зависит от степени подготовки и технической базы пользователя. Рекомендуются вертикальные конструкции, независимые от направления ветра и не нуждающиеся в установке на высокие мачты.
Наиболее удачно отвечают требованиям карусельные многолопастные конструкции на основе ротора Савониуса. Существуют и промышленные установки такого класса, приобретение которых ускорит решение вопроса и позволит получить профессионально изготовленный комплекс с гарантированными параметрами.
Вертикалки
Ветряки с вертикальной осью вращения являются наиболее подходящей для самостоятельного изготовления группой устройств. Они имеют простую, понятную конструкцию. Не нуждаются в большом количестве узлов вращения, нетребовательны к направлению ветра. Возможности этой группы породили большое количество вариантов конструкции, некоторые из которых следует рассмотреть подробнее.
ВС
Ветрогенератор Савониуса — одна из наиболее старых разработок, увидевших свет в 20-х годах прошлого столетия. Устройство состоит из двух лопастей достаточно большой площади, изогнутых в продольном направлении. В поперечном сечении они напоминают латинскую букву S. При этом, они слегка сдвинуты друг к другу, несколько перекрывая рабочие стороны.
При воздействии потока ветра одна из лопастей получает усилие на рабочую часть, а вторая — на обратную сторону. Форма лопасти способствует рассечению потока, часть которого уходит в сторону, а другая часть соскальзывает на рабочую поверхность второй лопасти, увеличивая вращающий момент.
Мнение эксперта
Эксперт Energo.House Фомин О. А.
Горный инженер, строитель.
На основе конструкции Савониуса разработано множество моделей ветряков с увеличенным количеством лопастей, большей эффективностью и чувствительностью к слабым ветрам.
Дарье
Конструкция Дарье была предложена почти одновременно с ротором Савониуса. Ее основа — лопасти, имеющие форму крыла самолета и расположенные вертикально по касательной к окружности вращения. Требуется нечетное число лопастей, иначе возникнет чрезмерно высокое уравновешивающее усилие. Подъемная сила лопастей способствует возникновению высокой скорости вращения, превышающей этот показатель в 3-4 раза по сравнению с ротором Савониуса.
Математического описания работы устройства до сих пор не имеется, но разработки, выполненные на основе конструкции, существуют и постоянно пополняются. Существует большое количество моделей частных ветрогенераторов с мощностью, достаточной для обеспечения небольшого дома.
Ортогонал
Ортогональные конструкции являются наиболее эффективными из всех базовых моделей вертикальных ветряков. Они обладают высокими скоростями, чувствительностью, производительностью. Конструкция состоит из нескольких лопастей (обычно три и больше), расположенных на некотором расстоянии от оси параллельно ей. Рассмотренный выше ротор Дарье — один из представителей ортогональных устройств. К недостаткам можно отнести высокие нагрузки на узел вращения, способствующие быстрому выходу из строя движущихся деталей.
Геликоид
Геликоидные конструкции созданы на основе базовой модели ортогонального типа, но со значительными изменениями геометрии лопастей. Они изогнуты по окружности вращения, получив форму, приближенную к спиральной. В результате достигается значительная стабилизация вращения, снижается износ движущихся элементов, конструкция в целом приобретает долговечность, прочность и надежность.
Более плавный режим вращения обеспечивает равномерную выработку электрического тока, что позволяет использовать устройства для прямого питания некоторых потребителей (осветительных устройств, насосов и т.д.). Для самостоятельного изготовления конструкция представляет достаточно трудную задачу из-за сложной геометрической формы лопастей.
Бочка-загребушка
Это — «народное» название многолопастного карусельного (вертикального) ветрогенератора. Устройство имеет хороший баланс, эффективно захватывает поток ветра, низкий уровень шума. Для желающих попробовать силы в изготовлении ветряк своими руками этот вариант конструкции рекомендуется как один из базовых типов конструкции. Лопасти делаются из листовой оцинкованной стали, разрезанных вдоль бочек или иного подручного материала.
Каркас — сваривается из металлического профиля — уголка, трубы и т.п. Особенность устройства в его неуязвимости для сильных порывов ветра — вокруг крыльчатки при усилении потока образуется вихревой кокон, препятствующий проникновению ветра внутрь крыльчатки. Поток просто обтекает устройство, как трубу.
Ветрогенератор Ленца
Особенность конструкции Ленца состоит в использовании вместо подшипников сильных неодимовых магнитов. Они удерживают узел вращения в «подвешенном» состоянии, что обеспечивает легкость вращения. Отсутствие трения способствует высокой долговечности оборудования. Показатели весьма впечатляющие — старт вращения происходит при скорости ветра от 0,17 м/с, а на номинальную производительность ветряк выходит уже при 3,4 м/с.
Финальная сборка
Раму генератора сваривают из профильной трубы. Хвост изготавливают из оцинкованной жести. Поворотная ось представляет собой трубку с двумя подшипниками. Генератор крепят к мачте таким образом, чтобы расстояние от лопасти до мачты было не менее 25 см. В целях безопасности для финальной сборки и монтажа мачты стоит выбрать безветренный день. Лопасти под действием сильного ветра могут изогнуться и разбиться о мачту.
Чтобы использовать аккумуляторы для питания техники, которая работает от сети 220 В, потребуется установить инвертор преобразования напряжения. Ёмкость батареи подбирается индивидуально к ветрогенератору. Этот показатель зависит от скорости ветра на местности, мощности подключаемой техники и частоты пользования ею.
Устройство ветрогенератора
Чтобы батарея не вышла из строя от чрезмерной зарядки, понадобится контроллер напряжения. Его можно изготовить самостоятельно, если обладаете достаточными знаниями в электронике, или купить готовый. В продаже имеется множество контролеров для механизмов получения альтернативной энергии.
Совет. Чтобы лопастник не сломался при сильном ветре, устанавливают простое устройство – защитный флюгер.
Как сделать ветрогенератор из автомобильного генератора
Самый простой вариант — использовать в качестве генератора ветряка автомобильный генератор. Автогенераторы недорого стоят, отлично ремонтируются, на рынке большой выбор. По стоимости они составляют примерно $20 за 1 кВт. Они выдают стабильное напряжение с определенных оборотов и стыкуются с аккумуляторами 12 вольт.
Недостатки:
- требуют высоких оборотов ‑ от 1,5-2,0 тыс. и выше в минуту;
- уступают в надежности заводским генераторам для ветряков;
- имеют относительно небольшой ресурс (до 4000 часов работы), что компенсируется низкой стоимостью.
Для сборки ветрогенератора своими руками из автомобильного генератора мощностью 1,5 кВт понадобится:
- автомобильный генератор на 12 в;
- соответствующая по напряжению аккумуляторная батарея;
- преобразователь с 12 на 220в, мощность 1,3 кВт;
- небольшая бочка (ведро) из алюминия или стали;
- зарядное реле и автомобильная контрольная лампа;
- защищенный от влаги выключатель, 12в;
- прибор контроля напряжения (старый вольтметр);
- медный провод от 2 мм сечением;
- крепеж (болты, шайбы, гайки, хомуты).
Из ручного инструмента понадобятся: ножницы по металлу, болгарка, рулетка измерительная, карандаш, отвертки, гаечные ключи в наборе, пассатижи, электродрель со сверлами.
Несколько принципиальных моментов в изготовлении ветрогенератора:
- Максимальной эффективности можно добиться, переделав автомобильный генератор под постоянные магниты. Для этого обмотку возбуждения нужно заменить на несколько ферритовых магнитов.
- Выточив немагнитный ротор из титана или другого немагнитного материала, можно избежать намагничивания ротора.
- Чтобы повысить генерацию тока на малых оборотах, нужно перемотать статор, увеличив количество витков в 5 раз и уменьшив диаметр провода.
- Установка на ротор неодимовых магнитов увеличит мощность генератора на малых оборотах. Четное количество магнитов крепится на стальной бандаж, который нужно прикрепить к основанию внутренней части генератора. При установке магнитов для повышения мощности нужно чередовать полярность.
- Для изготовления лопастей подойдет дюралевая труба, крепеж делается из стали. Лопасти обязательно нужно балансировать, а также максимально облегчить конструкцию, удалив лишнее болгаркой и наждаком.
В сети достаточно материалов с подробным описанием работ, поэтому нет необходимости повторяться
Как сделать ветрогенератор своими руками
Чтобы смонтировать это устройство в домашних условиях вам потребуется:
- Доскональные знания электрика;
- Источник питания. Это может быть генератор переменного тока или асинхронный двигатель.
- Надежное место для установки аппарата. Так как вес отдельных бытовых агрегатов может достигать от 200 до 800 кг.
- Ниодимовые магниты. Этот класс магнитов обладает большей производительностью;
Различные виды форм. В нашем случае более подходят прямоугольные или круглые
- Провода подходящего сечения;
- Материалы для монтажа рамы и непосредственно ветряка.
Как уже описывалось выше, существуют множество вариантов конструкций. От габаритов и способа соединения узлов зависит шумовой фон, создаваемый агрегатом. Если вы не хотите неприятностей с соседями, обсудите этот вопрос заранее, так как отдельные агрегаты работают достаточно шумно, например, как собранный своими руками ветряной генератор в следующем видео.
После проведения всех предварительных мероприятий вам потребуется подобрать подходящий вашим потребностям источник питания. При ограниченных финансовых возможностях возможны два бюджетных варианта:
- Автомобильный генератор;
- Асинхронный двигатель со стиральной машины.
У каждого варианта есть свои положительные и отрицательные стороны.
Статья по теме:
Стабилизатор напряжения 220В для дома: какой выбрать. В статье мы подробно рассмотрим для чего нужно это оборудование, виды, схемы подключения, средние цены и технические характеристики, как сделать самостоятельно.
Вариант ветрогенератора из стиральной машины своими руками
Для увеличения мощности двигатель модернизируют, заменяя ферритовые магниты на ниодимовые. Следует отметить, что установка магнитов довольно трудоемкий процесс, требующий определенных навыков.
Пример расположения ниодимовых магнитов в двигателе от стиральной машины
Рекомендация! Ниодимовые магниты очень мощные, будьте предельно внимательны при работе с ними.
В целях экономии времени и нервов, более простой вариант – это покупка готового ротора подходящего размера.Рационально применять такой двигатель в устройстве с небольшими габаритами.
Изготовление ветрогенератора своими руками из автомобильного генератора
Этот вариант также нуждается в доработке, так как стандартный образец работает при 5000 – 6000 оборотах в минуту. В модернизацию входят:
- Прибор укомплектовывается ниодимовыми магнитами. Они устанавливаются в строгом порядке, то есть полюса чередуются. Для удобства из плотного картона вырезается шаблон;
Шаблон расположения магнитов
- Перематывается обмотка статора. Количество витков увеличивается, следовательно, сечение провода уменьшается.
- В стандартной комплектации нет магнитов, поэтому центральный вал нужно выполнить из немагнитного материала, например, из титана.
Но даже при соблюдении всех требований для оптимального напряжения, ротор должен вращаться от 500 раз в минуту.
Общие отрицательные характеристики:
- Оба варианта недолговечны, требуют ежегодного ремонта или замены;
- Вырабатываемой мощности не хватит на полноценное энергоснабжение;
- Нуждаются в существенной доработке.
Если уж вы обладаете нужными знаниями и примерно знаете, как сделать ветрогенератор на 220В своими руками более рационально будет смонтировать агрегат большей мощности.
При сборке горизонтального или вертикального ветрогенератора своими руками, соблюдайте жесткость всей конструкции, от лопастей до контролирующих растяжек. Ненадежные узлы конструкции могут привести к аварии.
Один из многочисленных аварийных случаев
Видео: ветрогенератор 24В 2500Ватт своими руками
Как рассчитать и подобрать ветрогенератор
Ветер это не природный газ, качаемый по трубам и не электроэнергия, бесперебойно поступающая по проводам в наш дом. Он капризен и непостоянен. Сегодня ураган срывает крыши и ломает деревья, а завтра сменяется полным штилем.
Поэтому перед покупкой или самостоятельным изготовлением ветряка нужно оценить потенциал воздушной энергии в своем районе. Для этого следует определить среднегодовую силу ветра. Эту величину можно узнать в интернете по соответствующему запросу.
Получив вот такую таблицу, находим район своего проживания и смотрим на интенсивность его окраски, сравнивая ее с оценочной шкалой. Если среднегодовая скорость ветра получится меньше 4,0 метров в секунду, то ветряк ставить нет смысла. Он не даст нужного количества энергии.
Если сила ветра достаточна для установки ветряной электростанции, то можно переходить к следующему шагу: подбору мощности генератора.
Если речь идет об автономном энергоснабжении дома, то в расчет берут среднестатистическое потребление электроэнергии 1 семьей. Оно находится в диапазоне от 100 до 300 кВт*ч в месяц. В регионах с низким годовым ветропотенциалом (5-8 м/сек) такое количество электричества способен сгенерировать ветряк мощностью 2-3 кВт.
При этом следует учитывать, что зимой средняя скорость ветра выше, поэтому выработка энергии в этот период будет больше, чем летом.
Делаем генератор для ветряка
Для того чтобы собрать ветряную электростанцию, нам потребуется генератор, причем с самостоятельным возбуждением. Иными словами, в его конструкции должны присутствовать магниты, наводящие электроэнергию в обмотках. Именно так устроены некоторые электродвигатели, например, в шуруповертах. Но сделать приличный ветрогенератор из шуруповерта не получится – мощность будет просто смешной, хватит максимум на работу небольшой светодиодной лампы.
Сделать ветряную электростанцию из автогенератора тоже не получится – здесь используется обмотка возбуждения, питающаяся от аккумулятора, поэтому он нам не подходит. Из вентилятора бытового у нас получится сделать разве что пугач для птиц, атакующих огород. Поэтому нужно поискать нормальный самовозбуждающийся генератор подходящей мощности. А еще лучше потратиться и приобрести покупную модель.
Генератор действительно выгоднее купить, чем сделать – КПД заводского образца будет более высоким, нежели у самоделки.
Давайте посмотрим, как сделать генератор для нашего ветряка своими руками.
Его максимальная мощность составляет 3-3,5 кВт. Для этого нам понадобятся:
- Статор – он изготавливается из двух кусков листового металла, раскроенных в форме окружностей диаметром 500 мм. На каждую окружность по краю (немного отступив от края) наклеиваются 12 неодимовых магнитов диаметром 50 мм. Их полюса должны чередоваться. Аналогичным образом готовим вторую окружность, но только полюса здесь должны располагаться со сдвигом;
- Ротор – он представляет собой конструкцию из 9 катушек, намотанных медным проводом диаметром 3 мм в лаковой изоляции. В каждой катушке делаем по 70 витков, хотя в некоторых источниках рекомендуется делать по 90 витков. Для размещения катушек необходимо сделать основу из немагнитного материала;
- Ось – ее необходимо сделать точно по центру ротора. Причем биений быть не должно, конструкцию нужно тщательно отцентровать, иначе ее быстро разобьет ветром.
Размещаем статоры и ротор – сам ротор вращается между статорами. Между этими элементами выдерживается расстояние 2 мм. Все обмотки мы соединяем по нижеприведенной схеме, чтобы у нас получился однофазный источник переменного тока.
Ветрогенератор своими руками из шагового двигателя
Устройство из шагового двигателя даже при небольшой скорости вращения вырабатывает около 3 Вт. Напряжение может подниматься выше 12 В, а это позволяет заряжать небольшой аккумулятор. В качестве генератора можно вставить шаговый двигатель от принтера. В генераторном режиме у шагового двигателя вырабатывается переменный ток, а его без труда преобразовать в постоянный, используя несколько диодных мостов и конденсаторы. Схему, вы можете легко собрать своими руками. Стабилизатор устанавливают за мостами в следствии получим постоянное выходное напряжение. Чтобы контролировать зрительно напряжение, можно установить светодиод. С целью уменьшения потери 220В, для его выпрямления, применяются диоды Шоттки.
Лопасти будут из трубы ПВХ. Заготовку рисуют на трубе, а затем вырезают отрезным диском. Размах винта должен составлять около 50 см, а ширина лопастей — 10 см. Вам необходимо выточить втулку с фланцем под размер вала ШД. Она насаживается на вал двигателя и крепится с помощью винтов, непосредственно к фланцам будут крепиться пластиковые “винты”. Необходимо также провести балансировку – от концов лопастей отрезаются кусочки пластика, угол наклона изменить посредством нагрева и изгиба. Сам генератор вставляют в кусок трубы, к которому его тоже прикрепили болтами. Что касается электрической платы, то её лучше разместить внизу, а к ней вывести питание от генератора. С шагового двигателя выходят до 6 проводов, которые соответствуют двум катушкам. Для них необходимы токосъемные кольца для передачи электроэнергии от подвижной части. Соединив все детали между собой переходим к тестированию конструкции, которая будет начинать обороты при 1 м/ с.
Ветроэлектрическая установка роторного типа
Разберёмся, как смастерить своими руками простой ветряк с вертикальной осью вращения роторного типа.
Такая модель вполне может обеспечить потребности в электроэнергии садового домика, разнообразных хозяйственных построек, а также подсветить в темное время суток придомовую территорию и садовые дорожки.
Лопасти этой установки роторного типа с вертикальной осью вращения явно выполнены из элементов, вырезанных из металлической бочки
Наша цель – изготовление ветряка, предельная мощность которого составит 1,5 кВт. Для этого нам понадобятся следующие элементы и материалы:
- автомобильный генератор на 12 V;
- гелиевый или кислотный аккумулятор на 12 V;
- полугерметичный выключатель разновидности «кнопка» на 12 V;
- преобразователь 700 W – 1500 W и 12V – 220V;
- ведро, кастрюля большого объёма или другая вместительная ёмкость из нержавеющей стали или из алюминия;
- автомобильное реле контрольной лампы заряда или зарядки аккумулятора;
- автомобильный вольтметр (можно любой);
- болты с гайками и шайбами;
- провода сечением 4 квадратных мм и 2,5 квадратных мм;
- два хомута для закрепления генератора на мачте.
В процессе выполнения работ нам будут нужны болгарка или ножницы по металлу, строительный карандаш или маркер, рулетка, кусачки, сверло, дрель, ключи и отвертка.
Стартовый этап изготовления установки
Изготовление самодельного ветряка начинаем с того, что возьмем большую металлическую ёмкость цилиндрической формы. Обычно для этой цели используют старую выварку, ведро или кастрюлю. Именно она будет основой для нашего будущего ВЭУ.
С помощью рулетки и строительного карандаша (маркера) нанесем разметку: поделим нашу ёмкость на четыре одинаковые части.
Выполняя разрезы в соответствии с теми указаниями, которые содержатся в тексте, ни в коем случае не прорезайте металл до конца
Металл придется резать. Для этого можно использовать болгарку. Её не применяют для разрезания ёмкости из оцинкованной стали или окрашенной жести, потому что металл такого вида обязательно перегреется.
Для таких случаев лучше использовать ножницы. Вырезаем лопасти, но не прорезаем их до самого конца.
Теперь, одновременно с продолжением работ над ёмкостью, мы будем переделывать шкив генератора.
В днище бывшей кастрюли и в шкиве нужно наметить и просверлить отверстия для болтов. К работам на этой стадии нужно отнестись максимально внимательно: все отверстия должны располагаться симметрично, чтобы в ходе вращения установки не возникло дисбаланса.
Так выглядят лопасти ещё одной конструкции с вертикальной осью вращения. Каждая лопасть изготавливается отдельно, а потом монтируется в общее устройство
Отгибаем лопасти так, чтобы они не слишком торчали. Когда мы выполняем эту часть работы, обязательно учитываем, в какую сторону будет вращаться генератор.
Обычно направление его вращения ориентировано по ходу часовой стрелке. Угол изгиба лопастей влияет на площадь воздействия воздушных потоков и на скорость вращения пропеллера.
Теперь нужно закрепить на шкиве ведро с подготовленными к работе лопастями. Устанавливаем генератор на мачту, зафиксировав его при этом хомутами. Осталось присоединить провода и собрать цепь.
Подготовьтесь записать схему соединения, цвета проводов и маркировку контактов. Позже она вам непременно пригодится. Фиксируем провода на мачте устройства.
Этот рисунок содержит подробные рекомендации по сборке общей конструкции и общий вид устройства уже в собранном и готовом к эксплуатации виде
Для подсоединения аккумулятора нужно применить провода сечением 4 мм². Достаточно взять отрезок протяженностью 1 метр. Этого хватит.
А для того чтобы подключить к сети нагрузку, в состав которой входят, например, осветительные и электрические приборы, достаточно проводов с сечением 2,5 мм². Устанавливаем инвертер (преобразователь). Для этого тоже будет нужен провод 4 мм².
Преимущества и недостатки роторной модели ветряка
Если вы сделали всё аккуратно и последовательно, то этот ветрогенератор будет успешно работать. При этом никаких проблем в ходе его эксплуатации не возникнет.
Если использовать преобразователь 1000 W и аккумулятор 75А, это установка обеспечит электричеством и приборы видеонаблюдения, и охранную сигнализацию и даже уличное освещение.
Достоинства этой модели таковы:
- экономична;
- элементы легко можно поменять на новые или отремонтировать;
- особые условия для функционирования не нужны;
- надежная в эксплуатации;
- обеспечивает полный акустический комфорт.
Недостатки тоже имеются, но их не так уж много: производительность у этого устройства не слишком высока, и у него имеется значительная зависимость от внезапных порывов ветра. Воздушные потоки могут попросту сорвать импровизированный пропеллер.
Ветряк своими руками. Забава или реальная экономия
Скажем сразу, что сделать ветрогенератор своими руками полноценным и эффективным непросто. Грамотный расчет ветрового колеса, передаточного механизма, подбор подходящего по мощности и оборотам генератора – отдельная тема. Мы дадим лишь краткие рекомендации по основным этапам данного процесса.
Генератор
Автомобильные генераторы и электродвигатели от стиральных машин с прямым приводом для этой цели не подходят. Они способны генерировать энергию от ветрового колеса, но она будет незначительной. Автогенераторам для эффективной работы нужны очень высокие обороты, которые не может развить ветряк.
В моторах для стиралок другая проблема. Там стоят ферритовые магниты, а для ветрогенератора нужны более производительные – ниодимовые. Процесс их самостоятельного монтажа и намотки токоведущих обмоток требует терпения и высокой точности.
Мощность устройства, собранного своими руками, как правило, не превышает 100-200 Ватт.
В последнее время среди самодельщиков пользуются популярностью мотор-колеса для велосипедов и скутеров. С позиций ветроэнергетики это мощные ниодимовые генераторы, оптимально походящие для работы с вертикальными ветровыми колесами и зарядки аккумуляторов. С такого генератора можно снимать до 1 кВт ветровой энергии.
Мотор-колесо – готовый генератор для самодельной ветряной электростанции
Ветрогенератор источник электроэнергии
Тарифы на коммунальные услуги поднимаются как минимум один раз в год. А если присмотреться, то в некоторые годы та же электроэнергия поднимается в цене два раза – цифры в платежных документах растут как грибы после дождя. Естественно, все это ударяет по карману потребителя, доходы которого не показывают столь устойчивого роста. А реальные доходы, как показывает статистика, показывают тенденцию к падению.
Еще совсем недавно бороться с ростом тарифов на электроэнергию можно было одним простым, но незаконным способом – с помощью неодимового магнита. Это изделие прикладывалось к корпусу расходомера, в результате чего тот останавливался. Но пользоваться данной методикой мы настоятельно не рекомендуем – это небезопасно, незаконно, а штраф при поимке будет таким, что мало не покажется.
Схема была просто великолепная, но впоследствии она перестала работать по следующим причинам:
Участившиеся контрольные обходы стали массово выявлять недобросовестных хозяев.
- Участились контрольные обходы – по домам ходят представители контролирующих органов;
- На счетчики стали наклеиваться специальные стикеры – под действием магнитного поля они темнеют, разоблачая нарушителя;
- Счетчики стали невосприимчивыми к магнитному полю – здесь устанавливаются электронные учетные узлы.
Поэтому люди стали уделять внимание альтернативным источникам электроэнергии, например, ветрогенераторам. .
Еще один способ разоблачить нарушителя, ворующего электроэнергию – провести экспертизу уровня намагниченности счетчика, которая с легкостью выявляет факты хищения.
Еще один способ разоблачить нарушителя, ворующего электроэнергию – провести экспертизу уровня намагниченности счетчика, которая с легкостью выявляет факты хищения.
Ветряки для дома становятся привычным явлением в районах, где часто дуют ветра. Ветровой электрогенератор использует для выработки электроэнергии энергию ветровых потоков воздуха. Для этого они оснащаются лопастями, которые приводят в движение роторы генераторов. Полученная электроэнергия преобразуется в постоянный ток, после чего передается потребителям или запасается в аккумуляторных батареях.
Ветрогенераторы для частного дома, как самодельные, так и заводской сборки, могут основными или вспомогательными источниками электроэнергии. Вот типичный пример работы вспомогательного источника – он греет воду в бойлере или питает низковольтные домашние светильники, в то время как остальная домашняя техника работает от основной электросети. Также возможна работа как основного источника электричества в домах, не подключенных к электрическим сетям. Здесь они питают:
- Люстры и светильники;
- Крупную бытовую технику;
- Отопительные приборы и многое другое.
Соответственно, для того чтобы обогревать свое жилье, необходимо сделать или приобрести ветряную электростанцию на 10 кВт – этого должно хватить на все нужды.
Ветровая электростанция может питать как традиционные электроприборы, так и низковольтные – они работают от 12 или 24 вольт. Ветряной генератор на 220 В выполняется по схеме с применением инверторных преобразователей с накоплением электроэнергии в аккумуляторах. Ветрогенераторы на 12, 24 или 36 В устроены проще – здесь применяются более простые контроллеры заряда батарей со стабилизаторами.
Рекомендации по выбору количества лопастей
Отдельное внимание уделите выбору подходящего количества лопастей. Самыми популярными являются ветрогенераторы с 2-мя и 3-мя лопастями
Однако у подобных установок есть ряд недостатков.
При работе генератора с 2-мя или 3-мя лопастями имеют место мощные центробежные и гироскопические силы. Под воздействием упомянутых сил существенно возрастает нагрузка на основные элементы ветрогенератора. При этом в некоторых моментах силы действуют в противовес друг другу.
Чтобы нивелировать поступающие нагрузки и сохранить конструкцию ветрогенератора в целостности, нужно выполнить грамотный аэродинамический расчет лопастей и изготовить их в точном соответствии с расчетными данными. Даже минимальные погрешности в несколько раз уменьшают КПД установки и повышают вероятность скорой поломки ветрогенератора.
При пользовании данными аэродинамических справочников необходимо производить соответствующую корректировку
Новичкам настоятельно рекомендуется отдавать выбор в пользу тихоходных винтов. Они более просты в изготовлении и не требуют такой точности, как быстроходные модели.
При работе быстроходных ветродвигателей создается много шума, в особенности, если идет речь о самодельных установках.Чем больший размер будут иметь лопасти, тем сильнее будет шум. Этот момент накладывает ряд ограничений. К примеру, установить настолько шумную конструкцию на крыше дома уже не получится, если, конечно, владельцу не нравится ощущение жизни в условиях аэродрома.
Учитывайте, что с увеличением количества лопастей будет повышаться уровень вибрации, образующейся во время работы ветрогенератора. Двухлопастные установки более сложны в балансировке, особенно для неопытного пользователя. Следовательно, шума и вибрации от ветряков с двумя лопастями будет очень много.
Отдайте выбор в пользу ветрогенератора на 5-6 лопастей. Практика показывает, что такие модели являются наиболее оптимальными для самостоятельного изготовления и использования в домашних условиях.
Винт рекомендуется делать диаметром порядка 2 м. С работой по его сборке и балансировке справится практически любой желающий. Набравшись опыта, можете попробовать собрать и установить колесо с 12-ю лопастями. Сборка такого агрегата потребует больше усилий. Расход материалов и временные затраты тоже увеличатся. Однако 12 лопастей позволят даже при несильном ветре в 6-8 м/с получать мощность на уровне 450-500 Вт.
Учитывайте, что при 12 лопастях колесо будет довольно тихоходным, а это может привести к различным проблемам. К примеру, вам придется собрать специальный редуктор, более сложный и дорогой в изготовлении.
Таким образом, лучшим вариантом для начинающего домашнего мастера является ветрогенератор с колесом диаметром 200 см, оснащенным лопастями средней длины в количестве 6 штук.
Роторная установка
Подобный ветряной генератор, сделанный своими руками, способен вырабатывать количество электроэнергии, достаточной для освещения небольшого садового домика, хозяйственных построек, а также нескольких фонарей на дворовой территории. Изготавливаются такие ветряки из автомобильного генератора или стартера, а потому, чтобы не приобретать дорогостоящее оборудование для его изготовления, рассмотрим устройство, которое будет вырабатывать до полутора киловатт. Для этого будет необходимо наличие следующих материалов:
- автомобильного генератора на 12 вольт;
- гелиевого или кислотного аккумулятора (нужен также 12-вольтовый);
- герметичного выключателя;
- преобразователя напряжения с 12 на 220 В и 700–1500 ватт;
- большой емкости из нержавейки или алюминия для изготовления лопастей. Также может подойти и пластиковая труба диаметром в 20–25 см;
- реле зарядки аккумулятора с вольтметром;
- крепежной фурнитуры, т.е. болтов и гаек;
- проводов, имеющих сечение 4 и 2,5 кв. мм;
- двух хомутов для крепления на мачте устройства;
- металлической трубы достаточной длины для использования ее в качестве мачты;
- ну и, естественно, различного инструмента: ножниц по металлу, болгарки, ключей, отверток и дрели с набором сверел.
Алгоритм работы по изготовлению
Пример вырезания лопастей ветрогенератора
Первым делом необходимо сделать лопасти вентилятора будущего ветрогенератора для частного дома своими руками. Для этого хорошо подойдет старая большая алюминиевая кастрюля, но тут возможны варианты. Карандашом необходимо разметить, а после разрезать емкость по размеченным линиям при помощи болгарки или ножниц по металлу, оставляя непрорезанными небольшие отрезки сверху и снизу, т.е. так, как показано на рисунке. Лопасти должны получиться одинаковыми, а их количество зависит только от предпочтений мастера.
Вырезанные лопасти выгибаются в нужную сторону. Нужно помнить о том, что от того, в какую сторону вывернуты лопасти, зависит направление вращения, а от угла их поворота и размера — скорость, с которой винт будет вращать генератор. Вырезать их удобнее болгаркой, но если металл тонкий, вполне подойдут и ножницы по металлу.
Немного сложнее обстоит дело с пластиковой трубой. Ее необходимо разделить вдоль на четыре части, после чего на каждую из полукруглых отрезков изготовить «заглушки сверху и снизу, а после скомпоновать в один винт, чтобы получилось подобие первого варианта.
Далее при помощи дрели делаются крепежные отверстия в валу генератора и готовом пропеллере, после чего лопасти при помощи болтов фиксируются на вал ротора. Можно произвести подобную работу и при помощи редуктора, увеличив скорость вращения генератора, — это уже на усмотрение самого мастера.
После произведенной работы остается только закрепить ветрогенератор при помощи хомутов на мачту и протянуть вдоль нее провода.
Схема устройства ветряка
Сборка оборудования на земле
Т.к. оптимальная длина мачты ветроэлектростанции составляет 5–13 метров, основание ее необходимо залить бетоном для хорошей устойчивости. Также имеет смысл продумать и варианты, как опустить вниз ветряной генератор для дома или добраться до него в случае поломки.
Провода, идущие от самого ветрогенератора, подключаются через реле зарядки на аккумулятор. Далее в схеме идет преобразователь, от которого напряжение в 220 вольт уже будет поступать в распределительный щит.
Все оборудование должно быть защищено от попадания атмосферных осадков и прямого доступа детей. Выключатель устанавливается на мачте, на доступной высоте, и разрывает плюсовой провод от ветрогенератора на реле зарядки. Тем самым, при ненужности либо слабом ветре можно снять нагрузку, позволив лопастям вращаться «вхолостую».
Очень важно отключать нагрузку при слишком сильном ветре, который может вывести из строя как сам генератор, так и реле зарядки аккумулятора. . Но существует и более мощный вариант изготовления ветрогенератора своими руками в домашних условиях
Конечно, он немного сложнее, но, все же, соблюдая правила и порядок работы, сделать подобное устройство вполне реально.
Но существует и более мощный вариант изготовления ветрогенератора своими руками в домашних условиях. Конечно, он немного сложнее, но, все же, соблюдая правила и порядок работы, сделать подобное устройство вполне реально.
Электрическая схема генератора
Принцип работы ветряной установки
Ветрогенератор или ветроэлектрическая установка (ВЭУ) – это устройство, которое используется в целях преобразования кинетической энергии потока ветра в механическую энергию. Полученная механическая энергия вращает ротор и преобразуется в необходимый нам электрический вид.
В состав ВЭУ входят:
- лопасти, образующие пропеллер,
- вращающийся ротор турбины,
- ось генератора и сам генератор,
- инвертор, который преобразует переменный ток в постоянный, использующийся для зарядки батарей,
- аккумулятор.
Суть устройства ветряных установок проста. В процессе вращения ротора образуется трехфазный переменный ток, который затем проходит через контроллер и заряжает аккумуляторную батарею постоянного тока. Дальше инвертор преобразует ток, чтобы его можно было потреблять, питая освещение, радиоприемник, телевизор, микроволновую печь и так далее.
Подробное устройство ветрогенератора с горизонтальной осью вращения позволяет хорошо представить себе, какие элементы способствуют превращению кинетической энергии в механическую, а затем в электрическую
Эта схема работы ветроустановки позволяет понять, что происходит с электроэнергией, произведенной работой ветрогенератора: часть её аккумулируется, а другая — потребляется
В целом, принцип работы ветрогенератора любого типа и конструкции заключается в следующем: в процессе вращения возникает три вида силового воздействия на лопасти: тормозящее, импульсное и подъёмное. Две последние силы преодолевают тормозящую силу и приводят в движение маховик. На неподвижной части генератора ротор формирует магнитное поле, чтобы электрический ток пошел по проводам.
Галерея изображений
Фото из
Для изготовления ветряного генератора энергии подойдет двигатель от ненужной бытовой техники. Чем больше вольт приходится на один оборот, тем эффективней станет работать система
К ротору мотора присоединяется втулка, на которой фиксируются лопасти устройства. Лобовой узел лучше закрыть защитным кожухом
Лобовую часть с мотором и лопастями необходимо уравновесить с хвостовой частью. Плечо хвоста из трубы или рейки должно быть длиннее, на его краю закрепляется хвостовик любой формы
Двигатель для простейшего ветряка
Специфика соединения мотора с лопастями
Равновесие хвостовой и лобовой части
Правила установки ветряного генератора
Схема самодельного ветрогенератора основные узлы
Сделать самодельный ветрогенератор в домашних условиях сравнительно легко. Ниже вы можете увидеть простой чертеж, объясняющий расположение отдельных узлов. Согласно этому чертежу, нам необходимо сделать или подготовить следующие узлы:
Схема самодельного ветряка.
- Лопасти – они могут быть изготовлены из самых разных материалов;
- Генератор для ветрогенератора – можно приобрести готовый или сделать самостоятельно;
- Хвостовая часть – направляет лопасти по направлению ветра, позволяя добиться максимального КПД;
- Мультипликатор – повышает обороты вращения вала (ротора) генератора;
- Крепежная мачта – на ней будут удерживаться все вышеперечисленные узлы;
- Натяжные тросы – удерживают всю конструкцию и не дают упасть от порывов ветра;
- Контроллер заряда, аккумуляторы и инвертор – обеспечивают преобразование, стабилизацию и накопление полученной электроэнергии.
Мы попробуем сделать с вами простой роторный ветрогенератор.
Общий принцип работы
Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:
- Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
- Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального: если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.
Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра
Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером
Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.
На видео рассказывается про ветрогенератор, изготовленный своими руками
Ветрогенераторы своими руками на 220 в
Для того, чтобы собрать ветроуловитель нам понадобятся: генератор на 12 вольт, аккумуляторные батареи, преобразователь с 12 v на 220 в, вольтметр, медные провода, крепежи (хомуты, болты, гайки).
Чтобы ветрогенератор получился практичным и качественным, перед его изготовлением лучше дополнительно ознакомиться с подробной инструкцией
Изготовление любого ветряка предполагает наличие таких этапов как:
- Изготовление лопастей. Лопасти вертикального ветрогенератора можно сделать из бочки. Нарезать детали можно при помощи болгарки. Винт для небольшого ветряка можно изготовить из трубы ПВХ с сечением в 160 мм.
- Изготовление мачты. Мачта должна быть высотой не менее 6 метров. При этом, для того, чтобы крутящее усилие не сорвало мачту, ее необходимо закрепить ее на 4 растяжки. Каждую растяжку, при этом, нужно намотать на бревно, которое следует закопать глубоко в землю.
- Установка неодимовых магнитов. Магниты наклеиваются на диск ротора. Лучше выбирать прямоугольные магниты, магнитные поля в которых сосредотачиваются по всей поверхности.
- Намотка катушек генератора. Намотка выполняется медной нитью с диаметром не менее двух мм. При этом, мотков должно быть не более 1200.
- Фиксация лопастей к трубе при помощи гаек.
При наличии мощных аккумуляторных батарей и инвертора, полученное устройство сможет выработать такое количество электричества, которого будет достаточно для использования бытовой техники (например, холодильника и телевизора). Отлично подойдет такой генератор для поддержания работы систем освещения, отопления и вентиляции небольшого дачного домика, теплицы.
Как сделать своими руками
Самой надежной и простой по конструкции считается роторная ВЭУ, представляющая собой установку с вертикальной осью вращения. Готовый самодельный генератор такого типа способен полностью обеспечить энергопотребление дачи, включая оснащение жилого помещения, хозяйственных строений и уличное освещение (правда, не слишком яркое).
Если достать инвертор с показателями в 100 Вольт и аккумулятор в 75 Ампер, то ветряк будет намного мощнее и производительнее: электричества хватит и на видеонаблюдение, и на сигнализацию.
Чтобы сделать ветрогенератор, понадобятся детали конструкции, расходные материалы и инструменты. Первым делом необходимо подыскать подходящие составные элементы ветряка, многие из которых можно найти среди старых запасов:
- Генератор от автомобиля с мощностью около 12 V;
- Аккумуляторная батарея на 12 V;
- Кнопочный полугерметичный выключатель;
- Инвентор;
- Реле автомобиля, служащее для зарядки аккумулятора.
Также потребуются расходные материалы:
- Крепежи (болты, гайки, изолирующая лента);
- Стальная или алюминиевая емкость;
- Проводка сечением в 4 кв. мм (два метра) и 2,5 кв. мм (один метр);
- Мачта, тренога и другие элементы для усиления устойчивости;
- Крепкая веревка.
Желательно найти, изучить и распечатать чертежи ветрогенераторов своими руками. Потребуются и инструменты, в числе которых болгарка, метр, пассатижи, сверло, острый нож, электродрель, отвертки (крестовая, минусовая, индикаторная) и гаечные ключи.
Подготовив все необходимое, можно приступать к сборке, ориентируясь на пошаговую инструкцию, рассказывающую, как сделать ветрогенератор своими руками:
- Из металлической емкости вырезать лопасти одинакового размера, оставив у основания нетронутую полоску металла в несколько сантиметров.
- Симметрично проделать отверстия дрелью для имеющихся болтов в дне основания емкости и шкиве генератора.
- Отогнуть лопасти.
- Зафиксировать на шкиве лопасти.
- Установить и закрепить генератор на мачте хомутами или веревкой, отступив от верха порядка десяти сантиметров.
- Наладить проводку (для подключения аккумулятора достаточно метровой жилы сечением в 4 кв. мм, для нагрузки освещением и электроприборами — 2,5 кв. мм).
- Отметить схему подключения, цветовую и буквенную маркировку для будущего ремонта.
- Установить преобразователь проводом с четвертным сечением.
- При необходимости украсить конструкцию флюгером и покрасить.
- Закрепить провода, обмотав мачту установки.
Ветрогенераторы своими руками на 220 Вольт — это возможность обеспечить дачу или загородный дом бесплатной электроэнергией в кратчайшие сроки. Наладить такую установку можно даже новичку, а большинство деталей для конструкции уже давно без дела лежат в гараже.
УÑÑановки клаÑÑиÑиÑиÑÑÑÑÑÑ Ð¸ÑÑÐ¾Ð´Ñ Ð¸Ð· ÑледÑÑÑÐ¸Ñ ÐºÑиÑеÑиев веÑÑодвигаÑелÑ:
- ÑаÑположение оÑи вÑаÑениÑ;
- ÑиÑло лопаÑÑей;
- маÑеÑиал ÑлеменÑов;
- Ñаг винÑа.
ÐÐУ, как пÑавило, имеÑÑ ÐºÐ¾Ð½ÑÑÑÑкÑивное иÑполнение Ñ Ð³Ð¾ÑизонÑалÑной и веÑÑикалÑной оÑÑÑ Ð²ÑаÑениÑ.
ÐÑполнение Ñ Ð³Ð¾ÑизонÑалÑной оÑÑÑ — пÑопеллеÑÐ½Ð°Ñ ÐºÐ¾Ð½ÑÑÑÑкÑÐ¸Ñ Ñ Ð¾Ð´Ð½Ð¾Ð¹-двÑмÑ-ÑÑÐµÐ¼Ñ Ð¸ более лопаÑÑÑми. ÐÑо Ñамое ÑаÑпÑоÑÑÑаненное иÑполнение воздÑÑнÑÑ ÑнеÑгеÑиÑеÑÐºÐ¸Ñ ÑÑÑановок по пÑиÑине вÑÑокого ÐÐÐ.
ÐÑполнение Ñ Ð²ÐµÑÑикалÑной оÑÑÑ — оÑÑогоналÑнÑе и каÑÑÑелÑнÑе конÑÑÑÑкÑии на пÑимеÑе ÑоÑоÑов ÐаÑÑе и СавониÑÑа. ÐоÑледние два понÑÑÐ¸Ñ ÑледÑÐµÑ Ð¿Ð¾ÑÑниÑÑ, Ñак как оба имеÑÑ Ð¾Ð¿ÑеделеннÑÑ Ð·Ð½Ð°ÑимоÑÑÑ Ð² деле конÑÑÑÑиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð²ÐµÑÑÑнÑÑ Ð³ÐµÐ½ÐµÑаÑоÑов.
РоÑÐ¾Ñ ÐаÑÑе — оÑÑогоналÑÐ½Ð°Ñ ÐºÐ¾Ð½ÑÑÑÑкÑÐ¸Ñ Ð²ÐµÑÑодвигаÑелÑ, где аÑÑодинамиÑеÑкие лопаÑÑи (две или более), ÑаÑÐ¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ñ ÑиммеÑÑиÑно дÑÑг дÑÑÐ³Ñ Ð½Ð° некоÑоÑом ÑаÑÑÑоÑнии и ÑкÑÐµÐ¿Ð»ÐµÐ½Ñ Ð½Ð° ÑадиалÑнÑÑ Ð±Ð°Ð»ÐºÐ°Ñ. ÐоÑÑаÑоÑно ÑложнÑй ваÑÐ¸Ð°Ð½Ñ Ð²ÐµÑÑодвигаÑелÑ, ÑÑебÑÑÑий ÑÑаÑелÑного аÑÑодинамиÑеÑкого иÑÐ¿Ð¾Ð»Ð½ÐµÐ½Ð¸Ñ Ð»Ð¾Ð¿Ð°ÑÑей.
РоÑÐ¾Ñ Ð¡Ð°Ð²Ð¾Ð½Ð¸ÑÑа — конÑÑÑÑкÑии веÑÑодвигаÑÐµÐ»Ñ ÐºÐ°ÑÑÑелÑного Ñипа, где две лопаÑÑи полÑÑилиндÑиÑеÑкой ÑоÑÐ¼Ñ ÑаÑÐ¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ñ Ð¾Ð´Ð½Ð° пÑоÑив дÑÑгой, обÑазÑÑ Ð² Ñелом ÑоÑÐ¼Ñ ÑинÑÑоидÑ. ÐоÑÑÑиÑÐ¸ÐµÐ½Ñ Ð¿Ð¾Ð»ÐµÐ·Ð½Ð¾Ð³Ð¾ дейÑÑÐ²Ð¸Ñ ÐºÐ¾Ð½ÑÑÑÑкÑий невÑÑок (около 15%), но Ð¼Ð¾Ð¶ÐµÑ Ð±ÑÑÑ ÑвелиÑен пÑакÑиÑеÑки вдвое, еÑли лопаÑÑи ÑÑавиÑÑ Ð¿Ð¾ напÑÐ°Ð²Ð»ÐµÐ½Ð¸Ñ Ð²Ð¾Ð»Ð½Ñ Ð½Ðµ гоÑизонÑалÑно, а веÑÑикалÑно и пÑименÑÑÑ Ð¼Ð½Ð¾Ð³Ð¾ÑÑÑÑное иÑполнение Ñ ÑгловÑм ÑмеÑением каждой паÑÑ Ð»Ð¾Ð¿Ð°ÑÑей оÑноÑиÑелÑно дÑÑÐ³Ð¸Ñ Ð¿Ð°Ñ.
Основные виды ветрогенераторов и их особенности
Существует две разновидности ветрогенераторов:
- С горизонтальным расположением ротора.
- С вертикальным ротором.
Первый тип – самый распространенный. Он характеризуется высоким КПД (40-50%), но имеет повышенный уровень шума и вибрации. Кроме этого, для его установки требуется большое свободное пространство (100 метров) или высокая мачта (от 6 метров).
Генераторы с вертикальным ротором энергетически менее эффективны (КПД почти в 3 раза ниже, чем у горизонтальных).
К их преимуществам можно отнести простой монтаж и надежность конструкции. Низкая шумность позволяет ставить вертикальные генераторы на крышах домов и даже на уровне земли. Эти установки не боятся обледенения и ураганов. Они запускаются от слабого ветра (от 1,0-2,0 м/с) в то время, как горизонтальному ветряку нужен воздушный поток средней силы (3,5 м/с и выше). По форме рабочего колеса (ротора) вертикальные ветрогенераторы весьма разнообразны.
Роторные колеса вертикальных ветряков
Благодаря малой частоте вращения ротора (до 200 об/мин), механический ресурс таких установок существенно превышает показатели горизонтальных ветрогенераторов.
Инструкция по изготовлению
Ветряк можно изготавливать даже из пластиковых бутылок. Он будет крутиться под действием ветра, издавая при этом шум. Возможных схем обустройства таких изделий существует много. Ось вращения допустимо располагать в них вертикально или горизонтально. Эти устройства используются в основном для борьбы с вредителями на приусадебном участке.
Самодельный ветрогенератор похож на бутылочный ветряк по конструкции, но размеры его больше, и он отличается более основательной конструкцией.
Если к ветряку для борьбы с кротами на огороде приделать мотор, он сможет давать электроэнергию и подпитывать, например, светодиодные светильники.
Сборка генератора
Для сборки ветряной электростанции обязательно потребуется генератор. В его корпус необходимо поставить магниты, которые будут обеспечивать электроэнергию в обмотках. Такой тип устройства имеют отдельные виды электродвигателей, к примеру, которые установлены в шуруповёртах. Но изготовить из шуруповерта генератор не удастся. Он не обеспечит необходимой мощности. Его хватит разве что на подпитку небольшой светодиодной лампы.
Из автомобильного генератора ветряную электростанцию тоже вряд ли получится сделать. Объясняется это тем, что в данном случае применяется обмотка возбуждения, получающая питание от аккумулятора, почему он и не подходит для этих целей. Следует подбирать самовозбуждающийся генератор оптимальной мощности либо купить готовую модель. Эксперты рекомендуют приобретать его в готовом виде, т. к. это устройство обеспечит высокий КПД, но никто не мешает сделать его своими руками. Предельная мощность у него будет находится на уровне 3,5 кВт.
Что потребуется взять:
- Статор. Для него используется 2 металлических листа, разрезанных на круги диаметром 500 мм. На каждый кусок наклеивают 12 неодимовых магнитов с диаметром 50 мм. Фиксируют их, несколько отступив от краев изделий, обязательно с чередованием полюсов. То же самое делают со второй окружностью, но полюсы ставят со сдвигом.
- Ротор. Конструкция включает в себя 9 катушек, которые наматываются медной проволокой диаметром 3 мм. Необходимо проделать по 70 витков во всех катушках. Чтобы разместить их, следует обустраивать немагнитную основу.
- Ось. Проделывают её в середине ротора. Надо отцентровать конструкцию, иначе она рассыплется под воздействием ветра.
Ставят ротор и статор и на дистанции 2 мм. Обмотки объединяют таким образом, чтобы получился 1-фазный источник переменного тока.
Создание лопастей
В ветреную погоду из готового устройства можно добывать 3,5 кВт мощности. При средней интенсивности воздушного потока этот показатель составляет не более 2 кВт. Устройство бесшумное, если сравнивать с моделями на электродвигателе.
Следует подумать о месте монтажа лопастей. В рассматриваемом примере изготавливается простая модификация ветрогенератора горизонтального типа с тремя лопастями. Можно попробовать изготовить вертикальной вариант, но КПД у него будет пониженным. В среднем он составит 0,3. Единственным преимуществом такой конструкции будет возможность работы при любом направлении ветра. Простые лопасти изготавливаются с помощью таких материалов:
- Древесина. Ее недостатком является появление трещин через некоторое время после запуска.
- Полипропилен. Идеальный вариант для генераторов небольшой мощности.
- Металл. Считается долговечным и надежным материалом, из которого можно изготавливать любые по размеру лопасти. Лучше всего подходит в данном случае дюралюминий.
Одно дело — изготовить своими руками лопасти для ветрогенератора, и совсем другое — обеспечить сбалансированность конструкции. Если все нюансы не будут учтены, сильный ветер без особого труда разрушит мачту. Как только лопасти будут изготовлены, вместе с ротором их устанавливают на монтажную площадку, где будет закреплена хвостовая часть.